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1 Abstract

In this paper we will explore preliminary topics in complex analysis. We will define what
complex numbers, complex valued functions, limits of complex functions, and derivatives
of complex functions, and will prove some of the interesting properties of each. We will
conclude with a brief survey of applications of complex analysis.

2 The Complex numbers

2.1 The Construction of the Complex Numbers

The study of complex numbers began in the 16th century with Italian mathematicians in-
vestigating the solutions to cubic polynomials found solutions involving the square roots
of negative numbers. The mathematician Giorlarno Cardano studied the simultaneous
equations x+ y = 10 and xy = 40. He encountered the solution

x = 5 +
√
−15 and y = 5−

√
−15

He saw that if the usual algebraic rules were assumed then the equations were in fact
satisfied but he disregarded this result as being ”as refined as it is useless”.Additionally
Cardano commented on equations of the form

x3 = 3px+ 2q

Whose solutions represents the intersection of a cubic polynomial and the line 3px+ 2q.
The Tartaglia formula states that

x =
3

√
q +

√
q2 − p3 +

3

√
q −

√
q2 − p3

2



gives a solution to such equations. But if q2 > p3 then the solution involves square roots
of negative numbers. Cardano noted in particular that x3 = 15x+ 4 gave the solution

x =
3

√
2 +
√
−121 +

3

√
2−
√
−121

It wasn’t until the 18th century that complex numbers gained wide use, and it
took 300 years from their conception to create a definition equivalent to the modern
definition.

Definition 1. A complex number is a number with real and imaginary components which
we write as z = a+ ib, where a, b ∈ R and i2 = −1. a is the real component of the com-
plex number and ib is called the imaginary component because i2 = −1 has no solutions
in the real numbers. If a = 0, then we call z a purely imaginary number, and if b = 0
then we call z trivially real.

From this definition we can see that any real number is a trivially complex number.
For the complex number z we denote the real component as Re(z) = a and the imagi-
nary component as Im(z) = b. The term complex number was not originally meant to
indicate extra intricacy but was instead meant to reflect its composite nature, being a
combination of a real and an imaginary number.

Definition 2. The set of complex numbers is defined to be

C = {a+ ib | a, b ∈ R}

It wasn’t until operations on complex numbers were defined that complex numbers
to be taken seriously. Thirty years after Cardano published his thoughts on roots of cubic
polynomials the mathematician Bombelli continued his work. Bombelli found that if he
assumed imaginary numbers worked algebraically like real numbers then

x =
3

√
2 +
√
−121 +

3

√
2−
√
−121 = 4

which is an actual solution to x3 = 15x+ 4
This observation lead to the definitions for the following three operations for any

two complex numbers z1 = a1 + b1i and z2 = a2 + b2i.

1. For addition of complex numbers we add each of the components (real and imagi-
nary) of the complex numbers separately. For the complex numbers z1 = a1 + b1i
and z2 = a2+b2i this can be written as Re(z1+z2) =Re(z1)+Re(z2) and Im(z1+z2)
= Im(z1)+Im(z2), or z1 + z2 = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i.

2. Multiplication of complex number is carried out by assuming the distributive and
multiplying out as you would for real numbers: (a1+b1i)(a2+b2i) = a1a2+a1b2i+
a2b1i+ b1b2i

2 = (a1a2 − b1b2) + (b1a2 + a1b2)i.
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Figure 1: Bombelli was the first to define operations on complex numbers.

We can see that many of the basic properties of real numbers are still true for the
complex numbers.

Theorem 1. (Properties of Complex Operations)
For any complex numbers z1, z2, z3

1. Addition is commutative; z1 + z2 = z2 + z1.

2. Multiplication is commutative; z1z2 = z1z2.

3. Addition is associative; z1 + (z2 + z3) = (z1 + z2) + z3.

4. Multiplication is associative; z1(z2z3) = (z1z2)z3.

Proof. We obtain the proofs for each of these properties through direct calculation.
Let z1 = a1 + b1i, z2 = a2 + b2i, z3 = a3 + b3i be arbitrary complex numbers.
1.

z1 + z2 = (a1 + b1i) + (a2 + b2i)

= (a1 + a2) + (b1 + b2)i

= (a2 + a1) + (b2 + b1)i

= (a2 + b2i) + (a1 + b1i)

= z2 + z1

2.

z1z2 = (a1 + b1i)(a2 + b2i)

= (a1a2 − b1b2) + (b1a2 + a1b2)i

= (a2a1 − b2b1) + (b2a1 + a2b1)i = z2z1
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3.

z1 + (z2 + z3)

= (a1 + b1i) + ((a2 + b2i) + (a3 + b3i))

= (a1 + b1i) + ((a2 + a3) + (b2 + b3)i)

= (a1 + (a2 + a3)) + (b1 + (b2 + b3))i

= ((a1 + a2) + a3) + ((b1 + b2) + b3)i

= ((a1 + a2) + (b1 + b2)i) + (a3 + b3i)

= ((a1 + b1i) + (a2 + b2i)) + (a3 + b3i)

= (z1 + z2) + z3

4.

(z1z2)z3

= ((a1 + b1i)(a2 + b2i))(a3b3i)

= ((a1a2 − b1b2) + (b1a2 + a1b2)i)(a3 + b3i)

= ((a1a2 − b1b2)(a3)− (b1a2 + a1b2)(b3)) + ((b1a2 + a1b2)a3 + (a1a2 − b1b2)b3)i
= (a1a2a3 − b1b2a3)− (b1a2b3 + a1b2b2) + (b1a2a3 + a1b2a3 + a1a2b3 − b1b2b3)i
= (a1(a2a3 − b2b3)− b1(b2a3 + a2b3)) + (b1(a2a3 − b2b3) + a1(b2a3 + a2b3))i

= (a1 + b1i)((a2a3 − b2b3) + (b2a3 + a2b3)i)

= (a1 + b1i)((a2 + b2i)(a3 + b3i))

= z1(z2z3)

2.2 The Complex Plane

To understand complex numbers intuitively we need alternative ways to represent them.
We can think of the complex numbers in a geometric sense if we associate each complex
number a + bi with the point (a, b) in the xy-plane.We then refer to this plane as the
complex plane. We call the x-axis the real axis and the y axis the imaginary axis. We
can see an example of four complex numbers depicted in the complex plane in figure 2.
This geometric representation allows us to relate complex numbers to trigonometry and
geometry.
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Figure 2: Four complex numbers depicted in the complex plane. A = 1+i, B = −.5+.7i,
C = −.4− .4i, D = .7− .5i

Equivalently we can relate the complex numbers to vectors by associating each
complex number z = a+ bi with the vector created by drawing a directed line segment
from the origin to the point (a, b) in the complex plane, as shown in figure 3.

Figure 3: The complex numbers from figure 3 depicted as vectors in the complex plane

Any complex number can also be put into a trigonometric form. For the complex
number z = a+ bi we can form a right triangle in the complex plane from the origin and
the points (a, b), (a, 0), as depicted in Figure 4. From this we can see that any complex
number can be expressed in the form:

z = r(cos θ + i sin θ)

We call this the polar form of z. We call θ the argument of z. The argument of a
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complex number is not unique, and if a is an argument of the complex number Z then
a+ tπ is also an argument of z for all t ∈ Z. The value for which −π < θ ≤ π is called
the principal argument of z, denoted argz.

Figure 4: The construction of the polar form of a complex number

The absolute value or modulus of a complex number is the real number |z| =√
a2 + b2. |z| is the distance in the complex plane between the complex number |z| and

the origin. The value |z1− z2| is equal to the distance between the two points z1 and z2.
Illustration of absolute value to go here.

The complex conjugate of a complex number z is z = a − bi. The complex con-
jugate of a complex number is its reflection across the real axis. A trivially complex
number is its own conjugate. In figure 5 we can see two complex conjugates. A = 2 + i
is the complex conjugate of B = 2− i and B is also the complex conjugate of A.

Figure 5: Two complex conjugates

We can derive some very useful properties which we will soon use from these two
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definitions.

Theorem 2. (Properties of Complex Conjugate and Modulus)
For any complex numbers z1, z2, z3

1. |z1z2| = |z1||z2|

2. (a)|z| = |z|, (b)zz = |z|2

3. z1 ± z2 = z1 ± z2

4. z = z

5. (a)Re(z) = z+z
2 , (b) Im(z) = z−z

2i

6. Re(z1z2) ≤ |z1z2|

Proof. Let z1 = a1 + b1i and z2 = a2 + b2i be arbitrary complex numbers.
1.

|z1z2| = |(a1 + b1i)(a2 + b2i)| = |(a1a2 − b1b2) + (b1a2 + a1b2)i|

=
√

(a1a2 − b1b2)2 + (b1a2 + a1b2)2

=
√

(a21 + b21)(a
2
2 + b22) =

√
a21 + b21

√
a22 + b22 = |z1||z2|

2. For the complex number z = a+ bi we can see that

(a)|z| =
√
a2 + (−b)2 =

√
a2 + b2 = |z|

(b)zz = (a+ bi)(a− bi) = (a2 + b2) + (ba− ab) = a2 + b2 = |z|2

3. For the complex numbers z1 = a1 + b1i and z2 = a2 + b2i it is apparent that

z1 + z2 = (a1 + a2) + (b1 + b2)i

= (a1 + a2)− (b1 + b2)i

= (a1 − b1i) + (a2 − b2i)
= z1 + z2

4. For the complex number z = a+ bi we can see that

z = a+ bi

= a− bi = a− (−bi) = a+ bi = z

5.

(a)
z + z

2
=

(a+ bi) + (a− bi)
2

=
2a

2
= a = Re(z)

(b)
z − z

2
=

(a+ bi)− (a− bi)
2

=
2bi

2
= bi = Im(z)
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6.

Re(z1z2) = (a1a2 − b1b2)

=
√

(a1a2 − b1b2)2

≤
√

(a1a2 − b1b2)2 + (b1a2 + a1b2)2

= |z1z2|

The complex conjugate also allows us to derive a division operation for complex
numbers. We define the quotient of two complex numbers z1 = a1+b1i and z2 = a2+b2i
by

z1
z2

=
a1 + b1i

a2 + b2i

=
a1 + b1i

a2 + b2i

a2 − b2i
a2 − b2i

=
(a1a2 + b1b2) + i(b1a1 − a1b2)

a22 + b22

=
a1a2 + b1b2
a22 + b22

+
b1a1 − a1b2
a22 + b22

i

Theorem 3. The triangle inequality, an important property of many metrics, holds
for the modulus of a complex number. That is,

|z1 + z2| ≤ |z1|+ |z2|

Figure 6: The Triangle inequality

The proof of this theorem follows geometrically from the fact that no side of a
triangle has greater length than the sum of the lengths of the other two sides, as shown
in figure 6, but we will show this algebraically using theorem 2.

Proof. Let z1, z2 ∈ C be arbitrary. We begin by applying Theorem #2(b) to z = z1 + z2

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)
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By the definition of multiplication of complex numbers

(z1 + z2)(z1 + z2) = z1z1 + z1z2 + z2z1 + z2z2

using Thm#2b, zz = |z|2 again

z1z1 + z1z2 + z2z1 + z2z2 = |z1|2 + z1z2 + z2z1 + |z2|2

By Thm#4, along with the commutativity of multiplication of complex numbers.

|z1|2 + z1z2 + z2z1 + |z2|2 = |z1|2 + (z1z2 + z1z2) + |z2|2

By Thm#5(a)

|z1|2 + (z1z2 + z1z2) + |z2|2 = |z1|2 + 2Re(z1z2) + |z2|2

And finally, by Thm#6, followed by factoring

|z1|2 + 2Re(z1z2) + |z2|2 ≤ |z1|2 + 2|z1z2|+ |z2|2 = (|z1|+ |z2|)2.

We have shown that
(|z1 + z2|)2 ≤ (|z1|+ |z2|)2

which implies
|z1 + z2| ≤ |z1|+ |z2|

3 Functions in the Complex Plane

In this section we will investigate properties of complex valued functions. We will prove
several theorems whose real valued analogues were central to Real Analysis.

3.1 Topology of the Complex plane

To begin with we must define terminology related to the topology of the complex plane,
which will be central to the definition of a limit of a complex function.

Definition 3. Let ε > 0 be an arbitrary real number. The ε-neighborhood of a point
z0 ∈ C is the set of all complex numbers which satisfy the inequality |z − z0| < ε. That
is {z | |z − z0| < ε}

In figure 7 we see an example ε-neighborhood of the point 5− 2i with ε = .4.
We call a point z0 ∈ S an interior point of the set S if and only if there exists some

ε-neighborhood of z0 which is a subset of S. Conversely we call z0 an exterior point of
the set S if and only if there is some ε-neighborhood of z0 which contains no points in
S.

A limit point or accumulation point of a set of complex numbers S is a point for
which every ε-neighborhood of z0 contains an infinite number of points in S.
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Figure 7: The ε-neighborhood of 5− i, for ε = .4.

3.2 Complex Functions

We define a complex function similarly to how we define a real valued function.

Definition 4 (Complex Functions). A complex function f defined on a set of complex
numbers S is a rule which assigns to each z = x + iy in S a unique complex number
w = u+ iv which is written as f : S → C

From this definition we can see that a complex function maps each complex number
in a set of complex numbers to one to one and only one other complex number. The
set of complex numbers which the function does map, S in the definition, is called the
domain of f and the complex numbers which are mapped to {f(z) : z ∈ S} is called the
range or image of S. In figure 8 we see an example. If the domain of f(z) = z2 is the
single point 1 + i then the range is the single point 2i.

Figure 8: The complex function f(z) = z2 maps the point A = (1,1), depicted on the
left to the point B = (2,0), shown on the right.

We now have the necessary foundation to define the limit of a complex function.
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Definition 5 (Limit of a Complex Function). For a function f defined at all points in
some ε-neighborhood of z0, with the possible exception of the point z0, we call the complex
number L the limit of f(z) as z approaches z0 and write L = limz→z0 f(z) if and only if
for any ε > 0, we can find δ > 0 such that

0 < |z − z0| < δ ⇒ |f(z)− L| < ε

This definition says that L is the limit of f(z) as z approaches z0 if whenever you are
given an ε > 0 you can find an δ-neighborhood around z0 such that every point within
the δ-neighborhood maps to a point the ε-neighborhood around z0. Some examples will
make this definition clearer.

Limit Example 1 lim
z→2−i

(2z + 1) = 5− 2i

Let ε > 0. Let δ = ε
2 and suppose that |z − (2− i)| < δ. Then

|f(z)− L| = |(2z + 1)− (5− 2i)|
= |(2z + 2i− 4)|
= |2(z + i− 2)|
= 2|z + i− 2|
= 2|z − (2− i)|

< 2
ε

2
= ε

Figure 9: An illustration of example 1. For the function f(z) = 2z + 1 all points in the
δ-neighborhood depicted on the left map to points within the ε-neighborhood
on the right.

Limit Example 2: lim
z→z0

(z2 + 5) = z0
2 + 5

Let ε > 0, z0 ∈ C, and δ = min{ ε
3|z0| , |z0|}. Suppose that |z− z0| < δ.. If we add 2|z0| to
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|z − z0| < |z0| we can see that |z + z0| < 3|z0|. Observe that:

|f(z)− L| = |f(z)− (z0
2 + 5|

= |(z2 + 5)− (z0
2 + 5)|

= |z2 − z02|
= |z + z0||z − z0|
< 3|z0||z − z0|

< 3|z0|
ε

3|z0|
= ε

From the definition of a complex limit it it natural to ask if a function can have more
than one limit at any point. We find that the intuitive answer, no, is correct.

Theorem 4. The Uniqueness of Limits of Complex Valued Functions
The limit of a complex valued function is unique. That is, for any function f(z), if
limz→zo f(z) = L1 and limz→zo f(z) = L2 then L1 = L2.

Proof. Let f : S → C where S ⊆ C. Suppose that f(z) has two distinct limits, L1 and
L2, as z goes to z0. Let ε = | l1−l22 —. Then we know that there exists δ1, δ2 such that if
|z − z0| < δ1 then |f(z)− l1| < ε and if |z − z0| < δ2 then |f(z)− l2| < ε.
Let δ = min{δ1, δ2}. Then if |z − z0| < δ

|f(z)− L1| < ε and |f(z)− L2| < ε

Then we can see by the triangle inequality that:

|L1 − L2| = |L1 − f(z) + f(z)− L2| ≤ |L1 − f(z)|+ |f(z)− L2|

And by our definition of z

|L1 − f(z)|+ |f(z)− L2| < ε+ ε =

∣∣∣∣L1 − L2

2

∣∣∣∣+

∣∣∣∣L1 − L2

2

∣∣∣∣
This is a contradiction and therefore the limit of a complex valued function is unique.

Next we will look at some commonly used properties of complex numbers which
have strikingly similar analogues for properties of limits of real numbers. When we are
interested in the limit of a complicated function, these properties may allow us to break
the function down into smaller, more manageable parts.

Theorem 5. If lim
z→z0

f(z) = L1 and lim
z→z0

g(z) = B, then

1. limz→z0(f(z) + g(z)) = L1 ± L2

2. limz→z0(f(z)g(z)) = L1L2
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Proof. Let f(z) and g(z) be complex functions such that lim
z→z0

f(z) = L1 and lim
z→z0

g(z) =

L2.
Part 1: Let ε > 0. Then there exists δ1 > 0 such that

if |z − z0| < δ1 then |f(z)− L1| <
ε

2

Similarly there exists δ2 > 0 such that

if |z − z0| < δ2 then |g(z)− L2| <
ε

2

Let δ = min{δ1, δ2}. Then if |z − z0| < δ:

|(f(z) + g(z))− (L1 + L2)| ≤ |f(z)− L1|+ |g(z)− L2| < ε/2 + ε/2 = ε

Part 2: Let ε > 0. Then there exists δ1 > 0 such that

if |z − z0| < δ1 then |f(z)− L1| <
∣∣∣∣ ε

2(1 + L2)

∣∣∣∣ .
since l1 is the limit of f(z) as z approaches z0.
Similarly there exists δ2 > 0 such that

if |z − z0| < δ2 then |g(z)− L2| <
∣∣∣∣ ε

2(1 + L1

∣∣∣∣ .
by the same reasoning.
We also know that there exists some δ3 > 0 such that

if |z − z0| < δ3 then |f(z)− L1| < 1

which implies |f(z)| < 1 + L1|.
Let δ = min{δ1, δ2, δ3}. Then if |z − z0| < δ

|f(z0)g(z0)− L1L2| = |f(z0)g(z0) + f(z0)L2 − f(z0)L2 − L1L2|
≤ |f(z0)g(z0)− f(z0)L2|+ |f(z0)L2 − L1L2|
= |f(z0)||g(z0)− L2|+ |L2||f(z0)− L1|

< |f(z0)|
∣∣∣∣ ε

2(1 + L1

∣∣∣∣+ |L2|
∣∣∣∣ ε

2(1 + L2)

∣∣∣∣
< |1 + L1|

∣∣∣∣ ε

2(1 + L1

∣∣∣∣+

∣∣∣∣1 + L2||
ε

2(1 + L2)

∣∣∣∣
=
ε

2
+
ε

2
= ε
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For many functions the limit at a point is equal to the functional value at that
point. We call such functions continuous at that point. More technically, for a function
f(z) defined in an ε-neighborhood of the point z0 the function is continuous at the point
z0 if and only if limz→z0 f(z) = f(z0). We call f continuous on a set S if it is continuous
at every point in S.

Theorem 6. If f(z) and g(z) are both continuous at z0 6= 0 then f(z) ± g(z) and
f(z)g(z) are both continuous at z0.

Proof. Suppose f(z) and g(z) are both continuous at z0 6= 0. Then lim
z→z0

f(z) = f(z0)

and lim
z→z0

g(z) = g(z0)

1. By Theorem 3 we know that limz→z0(f(z)+g(z)) = f(z0)+g(z0), which implies f(z)+
g(z) is continuous at z0. 2. Similarly by theorem 3 we know that limz→z0 f(z)g(z) =
f(z0)g(z0), implies that f(z)g(z) is continuous at z0.

4 Complex Derivatives

After defining the limit of a complex function we are now able to dfine its derivative. A
core question we might have about a complex function is “what is its rate of change?”
To find a complex functions rate of change between two points we divide the amount of
change by the distance between the two points. The average rate of change of a function,
f(z), between two points, z1 and z2 is equal to:

|f(z2)− f(z1)|
|z2 − z1|

A harder question to answer is “what is the instantaneous rate of change?”, that is the
rate of change at a single point. To estimate the instantaneous rate of change at a point
z1 then we evaluate the rate of change between z1 and z1 + δz for succesively smaller δz.
Then our rate of change equation becomes

|f(z1)− f(z1 + δz)|
|δz|

As δz decreases we will generally get better estimates,although it is not guaranteed. To
obtain the exact answer we take the limit as δz approaches 0. This leads to the following
definition.

Definition 6 (Derivative). For a function f defined in a neighborhood of a point z0, we
define the derivative of f at z0 by

df

dz
(z0) = f ′(z0) = lim

δz→0

f(z0 + δz)− f(z0)

δz

Theorem 7. If f and g are both differentiable at a point z0 then

1. (f ± g)′(z0) = f ′(z0) + g′(z0)
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2. (fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0)

Proof. 1. We can see that

(f ± g)′(z0) = lim
δz→0

(f ± g)(z0 + δz)− (f ± g)(z0)

δz)

= lim
δz→0

f(z0 + δz)± g(z0 + δz)− (f(z0)± g(z0)

δz)

= lim
δz→0

f(z0 + δz)− f(z0)

δz)
± lim
δz→0

g(z0 + δz)− g(z0)

δz)

= f ′(z0)± g′(z0)

2. By using theorem 3 repeatedly we can see that

(fg)′(z0) = lim
δz→0

(fg)(z0 + δz)− (fg)(z0)

δz

= lim
δz→0

f(z0 + δz)g(z0 + δz)− f(z0)g(z0)

δz

= lim
δz→0

f(z0 + δz)g(z0 + δz) + (f(z)g(z)− f(z)g(z))− f(z0)g(z0)

δz

= lim
δz→0

f(z0)[g(z0 + δz)− g(z0)] + g(z0 + δz)[f(z0 + δz)− f(z0)]

δz

= lim
δz→0

f(z0)
g(z0 + δz)− g(z0)

δz0
+ lim
δz→0

g(z0 + δz)
f(z0 + δz)− f(z0)

δz

= [ lim
δz→0

f(z0)][ lim
δz→0

g(z0 + δz)− g(z0)

δz0
]

+ [ lim
δz→0

g(z0 + δz)][ lim
δz→0

f(z0 + δz)− f(z0)

δz
]

= f(z0)g
′(z0) + g(z0)f

′(z0)

Because the limit of a complex function is defined using an ε-neighborhood the
direction in which z approaches z0 does not matter. We may take advantage of this to
derive some necessary conditions for a complex function to be differentiable at a point.

Theorem 8. (The Cauchy-Riemann Relations) If a complex function f(z) = u(x, y) +
iv(x, y) is differentiable at the point z0 = x0 + iy0 then:

∂u

∂x
=
∂v

∂y

and
∂u

∂y
= −∂v

∂x

at the point z0.
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Proof. Let f(z) = u(x, y) + iv(x, y) be a complex function which is differentiable at the
point z0 = x0 + iy0. Then when computing the limit

f ′(z0) = lim
δz→0

f(z0 + δz)− f(z0)

δz

δz may approach zero in any manner and we will obtain the same results since the
definition of a limit is independent of path. If δz approaches zero horizontally, that is
along the real axis, then δz = δx, and therefore

f ′(z0) = lim
δz→0

f(z0 + δz)− f(z0)

δz)

= lim
δx→0

u(x0 + δx, yo) + iv(x0 + δx, y0)− u(x0, yo)− iv(x0, y0)

δx

= lim
δx→0

u(x0 + δx, yo)− u(x0, yo)

δx
+ i lim

δx→0

v(x0 + δx, y0)− v(x0, y0
δx

=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

where ∂f
∂a is the partial derivative of f with respect to a.

If δz approaches zero vertically, that is along the imaginary axis, then δz = iδy, and
therefore

f ′(z0) = lim
δz→0

f(z0 + δz)− f(z0)

δz

= lim
δy→0

u(x0, yo + δy) + iv(x0, y0 + δy)− u(x0, yo)− iv(x0, y0)

iδy

= lim
δy→0

u(x0, yo + δy)− u(x0, yo)

iδy
+ i lim

δy→0

v(x0, y0 + δy)− v(x0, y0)

iδy

=
1

i
lim
δy→0

u(x0, yo + δy)− u(x0, yo)

δy
+ i

1

i
lim
δy→0

v(x0, y0 + δy)− v(x0, y0)

δy

=
1

i

∂u

∂y
(x0, y0) + i

1

i

∂v

∂y
(x0, y0)

= −i∂u
∂y

(x0, y0) +
∂v

∂y
(x0, y0)

If we equate the real an imaginary parts of each equation we obtain the desired results:

∂u

∂x
=
∂v

∂y

and
∂u

∂y
= −∂v

∂x

We have completed our tour of preliminary complex analysis. A natural continua-
tion of this work would be to define complex integration, introduce power series repre-
sentations of complex functions, and derive Euler’s equation. We now continue on to a
brief survey of applications of complex analysis.
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5 Application of Complex Analysis

Complex analysis is widely used in physics, engineering and other mathematical fields.
Several of these applications are outlined below.

Physics and Engineering
Complex numbers are useful for the modeling of waves because waves have both phase
and amplitude. To model both of these quantities in one equation one can introduce
complex numbers. Because waves are essential to many physics fields one can apply
complex analysis to the examples below. Complex numbers are not necessary for study-
ing any of these applications, but instead act as a tool which simplifies problems.

In signal processing, a commonly encountered type of signal is the complex wave-
form. A complex waveform is a summation of waves with different frequencies and
amplitudes. By using a Fourier transform one can obtain the amplitude of a particular
frequency in a complex waveform. If this is done for all possible frequencies one obtains
the equation for a given complex waveform.

The Fourier transform has widespread uses, one of the most commonly used ap-
plications is the mp3 file format. Audio is a complex waveform and by analyzing the
frequencies and amplitudes of an audio signal you can recreate the audio signal. Essen-
tially the Fourier transform encodes how loud each particular note is in a sound. This
file format uses much less storage space than previous methods of modeling audio, hence
its ubiquity.

Some of the other physics and engineering fields which complex numbers are pow-
erful tools for are electrical engineering, thermodynamics, hydrodynamics, quantum me-
chanics, and optics.
Kramers-Kroning Relations
The Kramers-Kroning relations connect the real and imaginary components of any com-
plex function which is differentiable at all points where the imaginary component is
greater than or equal to zero. This has far-reaching physical implications. For a large
category of physics functions called response functions, these relations allow you to un-
derstand the state of a system by measuring the energy which has dissipated from it.
The most widespread example of this is in electron spectroscopy.
The Riemann zeta function
The Riemann zeta function is the complex valued function

ζ(s) =
∞∑
n=1

1

ns

which has been extensively studied and is the foundation for a branch of number theory
called analytic number theory. It leads to the prime number theorem which describes
the distribution of prime numbers among the integers.
Fundamental Theorem of Algebra
The Fundamental Theorem of Algebra states that any single-variable polynomial, with
degree n and complex coefficents, has exactly n complex roots. Because all real num-
bers are trivially complex this also applies to all single-variable polynomials with real
coefficients.
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