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Abstract

For f(1), f(2), ..., f(n), define S (a,b,n) to be the smallest possible
integer m, such that f(1), f(2), ..., f(n) are all distinct (mod m). Zhi-
Wei Sun claims in his paper A Simple Way to Generate All Primes
that he is able to generate exactly all primes using the quadratic f(t) =
t(t − 1) and modulo arithmetic defined above. We used the function
S (a,b,n) and defined it using the coefficients of a quadratic in the
form of f(t) = t(at + b) and n just being the term in the sequence.
Continuing off of Zhi-Wei Sun’s research which looked at S(1,-1,n),
we explore the general case where b is left as a constant, S(1,b,n).
Depending on the two different cases where b is either even or odd, we
see that S(1,b,n) is a combination of 2p, 2h, and p. After that, we show
the results of two specific cases, S(2,1,n) and S(3,1,n). Interestingly
S(2,1,n) results in 2h for h such that n ≤ 2h and S(3,1,n) in 3h for h
such that n ≤ 3h.

1 Introduction

For a very long time, mathematicians have been trying to find a polyno-
mial that only outputs prime numbers. They have found formulas that at first
give prime values, but they eventually fail. For example, p(n) = n2−n+ 41.
The first few terms are: n = 1 then p(n) = 41, n = 2 then p(n) = 43, n = 3
then p(n) = 47, n = 4 then p(n) = 53, n = 5 then p(n) = 61, n = 6 then
p(n) = 71, n = 7 then p(n) = 83. However when n = 41, p(n) = 1681, which
is 412, therefore it is not prime. Thus at n = 41, p(n) does not work.
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Recently, Zhi-Wei Sun came up with a new idea that uses a function
f(t) = t(t− 1) and modulo arithmetic. Specifically, for a fixed integer, n > 1
let m be the smallest integer such that f(1), f(2), ..., f(n) are distinct modulo
m. He claimed that the numbers in which arise this way are always prime.
Therefore it is believed that this simple function has a value set of exactly
all prime numbers.

Using the same method he explains in his paper A Simple Way to Gen-
erate All Primes, I used polynomials in the form of f(t) = at2 + bt + c.
However, since f(t1) ≡ f(t2) (mod m) iff f(t1)− c ≡ f(t2)− c (mod m), we
can instead just say f(t) = at2 + bt = t(at + b). Using this I began to find
the first m, that would give me a pairwise incongruent answer when it is
f(t) (mod m). I called this function S(a,b,n) or an abbreviated S(n); also
more commonly referred to as m. In Sun’s case his function was S(1,-1,n).
In the general case I looked at, I kept b as a variable to investigate how the
final answer was different as the value of b changed. This function looked
like S(1,b,n). The other two specific cases I looked at were S(2,1,n) and
S(3,1,n).

2 Proofs for the general case of f (t) = t(t + b)

Theorem 1. Suppose n > 1 is a fixed integer and m will denote an integer
such that f(1), f(2), ..., f(n) have distinct remainders (mod m), then

(i) m ≥ 2n+ b
(ii) m is a prime or power of 2 when b is odd

Proof of Theorem 1 (i).
First do the case where m− b is even:

Let x =
m− b

2
+ 1 and y =

m− b
2
− 1.

Then using the function f(t) = t(t+ b), f(x)− f(y) = x(x+ b)− y(y + b) =(
m− b

2
+ 1

)(
m− b

2
+ 1 + b

)
−

(
m− b

2
− 1

)(
m− b

2
− 1 + b

)
.

This simplifies to

2(m− b) + 2b = 2m ≡ 0 (mod 2m).
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Hence f(x) ≡ f(y) (mod m). We call this a collision. Because f(1), f(2),...,
f(n) are distinct (mod m), we must have x > n.

x =
m− b

2
+ 1 > n we easily see that m ≥ 2n+ b.

Now if m− b is odd:

let x =
m− b+ 1

2
and y =

m− b− 1

2
.

Then using the collision between x and y we obtain f(x)− f(y) =

(
m− b+ 1

2

)(
m− b+ 1

2
+ b

)
−

(
m− b− 1

2

)(
m− b− 1

2
+ b

)
,

which simplifies to

1

4
(2m− 2b+ 2b+ 2m− 2b+ 2b) = m

Again f(x) ≡ f(y) (mod m). Therefore using the same previous reasoning
x > n

x =
m− b+ 1

2
> n, which leads to m ≥ 2n+ b.

Lemma 2. When b is odd, we cannot have m = 2p for p an odd prime.

Proof of Lemma 2.
So by contradiction, suppose m = 2p.

Let x =
p− b

2
+ 1 and y =

p− b
2
− 1.

Then using previous methods of collision between x and y we obtain(
p− b

2
+ 1

)(
p− b

2
+ 1 + b

)
−

(
p− b

2
− 1

)(
p− b

2
− 1 + b

)
,

which simplifies to

2(p− b) + 2b = 2p ≡ 0 (mod 2p).
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Thus x > n which leads to

p− b
2

+ 1 > n leading to 2n+ b ≤ p =
m

2

which is impossible since we already established thatm itself has to be greater
than 2n+ b. Therefore it is not possible that m/2 is also greater than 2n+ b.
Thus m cannot be 2p.

Lemma 3. For any b we cannot have m divisible by p2 where p is an odd
prime.

Proof of Lemma 3.
By contradiction, assume p2 | m
For the case where b is odd,

let x = y + pq and y =
p− b

2
.

Then using the same collision as before between x and y we obtain(
p− b

2
+ pq

)(
p− b

2
+ pq + b

)
−

(
p− b

2

)(
p− b

2
+ b

)
,

which simplifies to

pq(pq + p) ≡ 0 (mod pq). Hence f(x) ≡ f(y) (mod m).

Now looking at the case where b is even, let x = y + pq and y = 2p−b
2
.

Then using the same collision as before between x and y we obtain(
2p− b

2
+ pq

)(
2p− b

2
+ pq + b

)
−

(
2p− b

2

)(
2p− b

2
+ b

)
,

which simplifies to
pq(pq + 2p) ≡ 0 (mod pq).

Since we have the same collision as before we can say that x > n which
once again gives us a contradiction to the property of x and m.
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Proof of theorem 1 (ii).
We know that m is a number such that f(1), f(2), ..., f(n) are distinct

(mod m). We know m 6= 2 ∗ odd and m - p2. We want to show that m is a
prime or a power of two when b is off. So assume That it is neither of those
and therefore m = pq for p is an odd prime and p - q

Let x = y + p and y =
2

gcd(2, q)
− b+ p

2
.

In the case of 2 | q

x =
q

2
− b

2
+
p

2
<
q

2
+
p

2

=
m

2p
+
m

2q

=
m

2

(
1

p
+

1

q

)
.

Now take the case that maximizes x to find the upper bound on x. Since
p - q and q > 2, the values of p and q that would maximize x are p=3 and
q=4 which gives us

x ≤ m

2

(
1

3
+

1

4

)
. Therefore x ≤ 7

24
m.

Now taking the case where 2 - q:

x = q − b

2
+
p

2
< q +

p

2

=
m

p
+
m

2q

= m

(
1

p
+

1

2q

)
.

Now to find the upper bound on x we must maximize p and q using the same
reasoning as before. But now q can not be even so the maximizing values
are p=5 and q=3 which gives us

x ≤ m

(
1

5
+

1

6

)
. Therefore x ≤ 11

30
m.
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In both cases they once again violate the properties of m and x and thus we
have a contradictions. Therefore m must be a prime of a power of two if b is
odd.

Theorem 1 shows that the only possibilites for m are primes and powers
of two. We are now going to show that if b is even then it can also be
twice a prime. Taking all of these options, we are now going to show that if
m ≥ 2n+ b then one of these options must be the answer to S(n).

Theorem 4. If m is a prime, double prime, or power of two then f(x) 6≡ f(y)
(mod m) for any 1 ≤ y < x ≤ n

Proof of Theorem 4.
case 1: m = 2a and b is odd

First assume 1 ≤ y < x ≤ n and note f(x)-f(y) = (x-y)(x+y+b). We can
easily attain 1 ≤ x − y < n ≤ m = 2a. Using the fact that b is odd then
we know that x-y and x+y+b have opposite parity so one will be odd and
one will be even. However we know that x − y is less than 2a therefore
2a - x− y. We also need x + y + b < 2x + b < 2n + b < n = 2a, which leads
to 2 - x + y + b. Thus, 2a can not divide the product therefore f(x) 6≡ f(y)
(mod 2a) therefore n has a distinct remainder.

case 2: m = p
Once again assume 1 ≤ y < x ≤ n which can easily become 1 ≤ x −
y < n ≤ m = p. Taking the inequality we know that p can not divide
x − y because it is too small. Therefore p must divide x + y + b. However
assuming that x and y are not the same and that y is smaller than x we get
x + y + b < 2x + b ≤ 2n + b ≤ m = p. Thus p cannot divide x+y+b and
therefore f(x) 6≡ f(y) (mod p) therefore n has a distinct remainder.

case 3: m = 2p and b is even
In the final case we again have x− y < m−b

2
< p and x+ y+ b < 2n+ b < m.

Then for m to divide (x − y)(x + y + b), 2 and p must divide the product.
However since x− y is smaller than p, it cannot be divisible by p therefore p
must divide x+y+ b. Since b is even we know that either x−y and x+y+ b
are bith even or odd. However since 2 must divide one they are both even.
Since p | x + y + b then x + y + b > p. Thus 2p|x + y + b, therefore
m < x+ y + b < 2n+ b. However since 2p = m, p cannot be greater than m
thus p - x+y+ b. Therefore f(x) 6≡ f(y) (mod 2p) therefore n has a distinct
remainder.
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For the general case the final conclusions that I was able to draw were

S(1, b, n) =

{
2a or p for b odd

2p or p for b even.

3 Proof for the specific case of f (t) = t(2t + 1)

Now take the case f(t) = t(2t+ 1) which says we are looking for S(2,1,n).

Theorem 5. S(n) = 2h is the answer for the minimum h such that n ≤ 2h.

Proof of Theorem 5.
Proposition 1:

Note that f(x) ≡ f(y) (mod m) if and only if (x − y)(2(x + y) + 1) ≡ 0
(mod m). Fix h such that 2h ≥ n. Then f(1),...,f(n) are distinct modulo 2h

and assume 1 ≤ y < x ≤ n ≤ m = 2h.
Now taking the previous note into consideration, f(x) ≡ f(y) (mod 2h)

if and only if (x− y)(2(x+ y) + 1) ≡ 0 (mod 2h) but 2(x+ y) + 1 is odd so it
is not divisible by any multiple of 2. Thus this is only possible if x − y ≡ 0
(mod 2h). However using the previous inequality, x − y is smaller than 2h,
thus f(x) 6≡ f(y). Therefore n has a distinct remainder.

Proposition 2: We try to show that m is even assuming 2h−1 < n ≤S(n) ≤
2h

Assume S(n) is even and m 6= 2q. By contradiction let m =S(n) be odd.
Since m is odd, z = m−1

2
is an integer.

Let x =
z + 1

2
and y =

z − 1

2
if z is odd.

Let x =
z + 2

2
and y =

z − 2

2
if z is even.

So then x − y = 1 or 2 and 2(x + y) + 1 = m. And f(x) ≡ f(y) (mod m),

therefore x > n. But then we have n < x =
m−1

2
+ε

2
for ε = 1 or 2 ≤

m−1
2

+m+1
2

2
= m

2
< 2h

2
= 2h−1 < n which gives us a contradiction to our

original inequlity. Therefore m cannot be odd.
Propostion 3:

Now suppose m = 2tp for p odd and t ≥ 1. Assume 2h − 1 < n ≤ m < 2h
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and f(1), f(2), ..., f(n) are all distinct (mod m). We now work towards a
contradiction.

For p ≡ 1 (mod 4) and t = 1, set k = 1. For p ≡ 1 (mod 4) and t ≥
2, set k = 1 = 2t. For p ≡ 3 (mod 4), set k = 3 if t = 1. Otherwise set
k = 3 + pt.
Finally, let x0 = kp−1

4
+ 2t−1 and y0 = kp−1

4
− 2t−1. By choice of k, x0 and y0

are both integers.
To show y > 0 we fix p = 5 and t = 1.

For t = 1 y = kp−1
4
− 21−1 = kp−1

4
− 1.

Then p ≡ 1 (mod 4) meaning that p must be greater than 5 which gives us
kp−1
4
− 1 > 0, continuing on p ≡ 3 (mod 4), which leads to kp ≥ 9. Finally

this shows that kp−1
4
− 1 > 0.

Now show f(x) ≡ f(y) (mod m), where m = 2tp
x − y = 2t, x + y = kp−1

2
this leads to 2(x + y) + 1 = kp. Therefore (x −

y)(2(x + y) + 1) ≡ 0 (mod 2tp). Thus we have the same collision and so we
know that m cannot be just any even number.

Finally to show x < m/2

x =
kp− 1

4
− 2t−1 =

km
2t
− 1

4
+
m

2p
=
m

2

(
k

2t+1
+

1

p

)
− 1

4
.

So we need
k

2t+1
+

1

p
≤ 1.

We then fix t = 1 and p = 3.
When p ≡ 3 (mod 4), we get k

2t+1 + 1
p
≤ 1

4
+ 1

5
< 1.

The next case is when p ≡ 3 (mod 4), which gives us k
2t+1 + 1

p
= 3

4
+ 1

p
≤

3
4

+ 1
7
< 1.

However if t ≥ 2 we still have to satisfy the k
2t+1 + 1

p
≤ 1.

When p ≡ 1 (mod 4) it results in,

k

2t+1
+

1

p
=

1 + 2t

2t+1
+

1

p
=

1

2t+1
+

1

2
+

1

p
≥ 1

8
+

1

2
+

1

5
=

33

40
< 1

Therefore the condition is satisfied. When p ≡ 3 (mod 4),

k

2t+1
+

1

p
=

3 + 2t

2t+1
+

1

p
=

3

2t+1
+

1

2
+

1

p
≥ 1

8
+

1

2
+

1

5
=

33

40
< 1

The final conclusions for this function state that S(2,1,n)= 2h for h such
that n ≤ 2h.
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4 Proof for the specific case of f (t) = t(3t + 1)

Taking the case f(t) = t(3t+ 1) is now saing we are looking for S(3,1,n).

Theorem 6. S(n) = 3h for h min such that n ≤ 3h, when n ≥ 9.

Proof of Theorem 6.
Let h be such that 3h ≥ n. Then f(1), f(2),..., f(n) are distinct (mod 3h)
Suppose f(x) ≡ f(y) (mod 3h)for1 ≤ y < x ≤ n < 3h Then (x-

y)(3(x+y)+1) is divisible by 3h. But 3 - 3(x + y) + 1 since it is not a
multiple of three, therefore 3 must divide x− y. So x ≥ y+ 3h. Which leads
to a contradition since x is already smaller than 3h

Proposition 1: S(n) must be divisible by 3.
On the contrary, suppose m =S(n) and 3 - m and that 3h−1 < n ≤ m < 3h,
and f(1),...,f(n) are distinct modulo 3h.

Let z0 =

{
m−1
3

when m ≡ 1(3)
2m−1

3
when m ≡ 2(3).

Let x0 =
z0 + ε

2
and y0 =

z0 − ε
2

Where ε is 1 when z0 is odd and 2 when it is even.

Then (x − y) = ε and 3(x + y) + 1 = 3z0 + 1 =

{
m m ≡ 1 (mod 3)

2m m ≡ 2 (mod 3).

By definition of m, this implies x > n. So n < x0 = z0+ε
2

= lm−1
3

+ ε =
lm
6
− 1

6
+ ε

2
< lm

6
≤ m3 < 3h−1 where l = 1, 2 However 3h−1 < n therefore we

have a contradiction, thus 3 | m.
Proposition 2:

So write m = 3sp for p > 1 and 3 - p, s ≥ 1. As always, assume 3h−1 < n ≤
m < 3h where h ≥ 2, and f(1), f(2), ..., f(n) are distinct modulo m.

Choose l by

l =


4 + 6k p ≡ 1 (mod 6)

2 + 6k p ≡ 2 (mod 6)

1 + 6k p ≡ 4 (mod 6)

2 + 6k p ≡ 5 (mod 6)

for k to be determined later. Now let

x0 =
lp− 1 + 3s+1

6
and y0 =

lp− 1− 3s+1

6
.
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Since lp = 4 (mod 6) and l± 3s+1 ≡ 3 (mod 6) we see that lp− 1± 3s+1 are
divisible by 6. Therefore x0 and y0 are integers. Then using the knowledge,
we can say thatx0 − y0 = 3s and x0 + y0 = lp−1

3
. Therefore 3(x0 + y0) + 1 =

lp ≡ 0 (mod p) thus f(x0) ≡ f(y0) (mod m).
Now when y0 > 0

y0 =
lp− 1− 3s+1

6
,

so y0 > 0 iff lp − 1 > 3s+1, where l is to be chosen later. Therefore we get
lp > 3s+1 + 1

We need x0 < m/3

=
lp− 1 + 3s+1

6
<
m

3

This is only true iff lp− 1 + 3s+1 < 2m which can be written as,

lm

3s
− 1 +

3m

p
< 2m which simplifies to m

(
l

3s
+

3

p
− 2

)
< 1.

We will now choose l such that l
3s

+ 3
p
− 2 ≤ 0, that is lp ≤ 3s(2p− 3). Now,

if lp is so chose then f(x) ≡ f(y), then x0 > n. But x0 < m/3 < 3h/3 =
3h−1 < n. Therefore we have a contradiction. Our proof is complete once
the conditions on lp are met. We need lp > 3s+1 + 1 and lp ≤ 3s(2p− 3).

We need lp > 3s+1 + 1 and lp ≤ 3s(2p − 3). That is l > 3s+1+1
p

and

l ≤ 3s(2− 3
p
).

Suffice (to pick l = ε+ 6k) to have 3s+1

p
+ 6 < 3s(2− 3

p
). For then we can

pick k to have 3s+1+1
p

< l = ε+6k < 3s(2− 3
p
). That is 3s+1 +6p < 3s(2p−3),

which is 2 ∗ 3 + 1 < (2 ∗ 3s − 6)p. And from this point just working out the
algebra, we obtain 2∗3s+1+1

2∗3s−6
< p. Then we can now begin to break it all down

and get
2 ∗ 3 ∗ 3s − 18 + 18 + 1

2 ∗ 3s − 6
= 3 +

19

2 ∗ 3− 6
< p

Now if s ≥ 2, the previous statement is≤ 3+19/12 < 5. Therefore everything
until now worked for p ≥ 5 and s ≥ 1.

Now we do the case where s = 1 and m = 3p where 3 - p.
We assume eh−1 < n ≤ m < 3h and that f(1), f(2), ..., f(n) are distinct

module m. We can check the small cases by hand, and so may assume
p > 10 and m > 24. Choose r = 1, 2 or 4 so that rp ≡ 4 (mod 6). (So if
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p ≡ 1 then r = 4, if p ≡ 2 then r = 2 etc.) Set x = rp+8
6

and y = rp− 106.
By the choice of r, x and y are both integers, and because p > 10, both are
positive integers.

Now x − y = 3 and 3(x + y) + 1 = rp. Thus f(x) ≡ f(y) (mod m),
and so n < x. We have x = rp+8

6
= rm

18
+ 8

6
≤ 4m

18
+ 8

6
. And because

m > 24 is it easy to see that this last value is greater than m/3. But then
3h−2 < n < x < m/3 < 3h−1/3 = 3h−1. Therefore we have a contradiction.
From which we can now say that m is not just a multiple of 3.

The final results of the last case of S (3,1,n)= 3h for h such that n ≤ 3h.
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