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Abstract. The purpose of this paper is to provide an introduction to Lie Theory through

the use of matrix groups and examples of Lie groups and Lie algebras that pertain to matrix

groups. We begin by giving background information in the mathematical areas that are used

in the study of Lie groups and Lie algebras, which are mainly abstract algebra, topology,

and linear algebra. Second, we introduce the reader to a formal definition of a matrix group,

as well as give three examples; the general linear group, the special linear group, and the

orthogonal group. Next, we define the meaning of a Lie algebra and how Lie algebras are

developed through the use of matrix exponentiation, and then use this method in finding

the Lie algebras of the three examples of matrix groups previously mentioned. Last, we

prove the result that all matrix groups are Lie groups, and then conclude the essay with a

small discussion on the importance of Lie groups and Lie algebras.
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1. Introduction

The origins of Lie theory stem from the work of Felix Klein (1849-1925), who envisioned

that the geometry of space is determined by the group of its symmetries. The developments in

modern physics in the 19th century required an expansion in our understanding of geometry

in space, and thus the notions of Lie groups and their representations expanded as well.

Sophus Lie (1842-1899) began by investigating local group actions on manifolds, and his

idea of looking at the group action infinitesimally began the study that would later be

referred to as Lie theory [7]. During the late 19th and early 20th centuries, the importance

of Lie theory became paramount due to the development of special and general relativity,

and has hardly slowed down since. This paper looks to understand the structure of Lie

groups and Lie algebras, giving the reader insight as to why the study of Lie theory has such

strong ramifications in both the mathematical and physical worlds.

Lie theory is a field of mathematics that takes elements from topology, linear algebra,

geometry, and other areas of mathematics. The study of Lie groups and Lie algebras can

be convoluted and difficult to conceptualize due to the highly abstract nature of the objects

themselves. Matrices, for the most part, are much more reasonable to deal with conceptually

and provide a window into the world of Lie theory due to the structure of certain types of

matrices under the operation of matrix multiplication. This paper looks to simplify the

entry into the world of Lie theory by using matrix groups as a way to understand the

structure of Lie groups and Lie algebras whilst dealing with objects that are familiar to most

mathematicians. Drawing from methodologies of previous studies, such as the works of Tapp

[6], this paper seeks to compile, review, and establish various introductory techniques in the

study of Lie theory and matrix groups in an effort to establish and solidify preexisting works.

2. Matrix Groups

We begin by introducing some elementary definitions concerning groups. For relevant

information concerning linear algebra, consult the appendix at the end of the paper.

Definition 2.1. [3] A binary operation ∗ on a set S is a function mapping S × S into S.

For each (a, b) ∈ S × S, we will denote the element ∗((a, b)) of S by a ∗ b.

Definition 2.2. Let ∗ be a binary operation on S and let H be a subset of S. The subset

H is closed under ∗ if for all a, b ∈ H we also have a ∗ b ∈ H. In this case, the binary

operation on H given by restricting ∗ to H is the induced operation of ∗ on H.

Definition 2.3. A group 〈G, ∗〉 is a set G, closed under a binary operation ∗, such that

the following properties are satisfied:
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(1) (Associativity) For all a, b, c ∈ G,

(a ∗ b) ∗ c = a ∗ (b ∗ c).

(2) (Identity) There is a unique element e in G such that for all x ∈ G,

e ∗ x = x ∗ e = x.

(3) (Inverse) Corresponding to each a ∈ G, there is a unique element a′ in G such that

a ∗ a′ = a′ ∗ a = e.

Definition 2.4. If a subset H of a group G is closed under the binary operation of G and

if H with the induced operation from G is a group, then H is a subgroup of G.

Notation. Let Mn(R) denote the set of all n× n square matrices with entries in R.

For the purposes of this paper, we will only be studying matrices with entries in R. The

study of matrices over different fields and skew-fields, such as the complex numbers C and

the quaternions H, is a widely important area of study and gives rise to different matrix

groups, but is beyond the scope of this paper.

Definition 2.5. [6] The general linear group over R is:

GLn(R) = {A ∈Mn(R) | ∃B ∈Mn(R) with AB = BA = In}

where In is the n × n identity matrix, i.e. GLn(R) is the collection of all invertible n × n
matrices.

Theorem 2.6. GLn(R) is a group with the operation being matrix multiplication.

Proof. Let n ∈ N be arbitrary and consider GLn(R).

Recall that for square matrices A,B ∈ Mn(R), det(A) det(B) = det(AB). Since for all

X, Y ∈ GLn(R), det(X) 6= 0 6= det(Y ), it follows that det(XY ) = det(X) det(Y ) 6= 0. Thus,

XY ∈ GLn(R), so GLn(R) is closed under matrix multiplication.

(Associativity) Let A = (aij), B = (bij), C = (cij) ∈Mn(R). Then we have

(A ∗B) ∗ C = ((aij) ∗ (bij)) ∗ (cij)

=

(
n∑

k=1

aikbkj

)
∗ (cij)

=

(
n∑

l=1

(
n∑

k=1

aikbkl

)
∗ (clj)

)



MATRIX GROUPS AND THEIR LIE ALGEBRAS 3

=

(
n∑

l=1

ail ∗

(
n∑

k=1

blk ∗ ckj

))

= (aij) ∗

(
n∑

k=1

blk ∗ ckj

)
= (aij) ∗ ((bij) ∗ (cij))

= A ∗ (B ∗ C).

Thus, matrix multiplication is associative, so associativity holds for GLn(R) in particular.

(Identity) Let A ∈ GLn(R) where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


Let In be the matrix defined as

In =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .
It immediately follows that AIn = InA = A, and since det(In) = 1, In ∈ GLn(R).

(Inverses) Since for all A ∈ GLn(R), A is invertible by the definition of GLn(R), so A−1

exists. And since A−1 is also invertible ((A−1)−1 = A), A−1 ∈ GLn(R).

Therefore, GLn(R) is a group under matrix multiplication. �

As the definition of matrix groups uses the definition of convergence, we define conver-

gence explicitly here.

Definition 2.7. A sequence of real numbers (an) converges to a real number a if, for every

ε > 0, there exists an N ∈ N such that whenever n ≥ N it follows that |an − a| < ε.

Definition 2.8. [4] Let Am be a sequence of matrices in Mn(R). We say that Am converges

to a matrix A if each entry of Am converges (as m → ∞) to the corresponding entry of A

(i.e. if (Am)ij converges to (A)ij for all 1 ≤ i, j ≤ n).

Definition 2.9. [4] A matrix group is any subgroup G ⊂ GLn(R) with the following

property: If Am is any sequence of matrices in G, and Am converges to some matrix A, then

either A ∈ G, or A is not invertible.
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Note that this definition is equivalent to stating that a matrix group is closed in the

topological sense of the word, which is defined in Section 3, due to the fact that a matrix group

contains its limit points. The group GLn(R) itself is a matrix group because any sequence

of matrices (An) which converges to a matrix A has the property that A is invertible or

not invertible. Two other important examples of matrix groups are the special linear group

SLn(R) and the orthogonal group On(R), which are the topics of the following paragraphs.

Definition 2.10. The special linear group over R, denoted SLn(R), is the set of all n×n
matrices with a determinant of 1, that is

SLn(R) = {A ∈ GLn(R) | detA = 1}.

We prove that SLn(R) is in fact a matrix group in Theorem 2.15; the following definitions

and theorems will be useful in doing so.

Definition 2.11. A function f : A→ R is continuous at a point c ∈ A if, for all ε > 0, there

exists a δ > 0 such that whenever |x− c| < δ (and x ∈ A) it follows that |f(x)− f(c)| < ε.

Definition 2.12. Let f : A → R, and let c be a limit point of the domain A. We say

that limx→c f(x) = L provided that, for all ε > 0, there exists a δ > 0 such that whenever

|x− c| < δ it follows that |f(x)− L| < ε.

Theorem 2.13. [1] Let f : A → R, and let c ∈ A be such that there exists some sequence

(xn) where xn ∈ A for all n ∈ N and xn → c. The function f is continuous at c if and only

if any one of the following holds true:

(1) f(xn)→ f(c);

(2) limx→c f(x) = f(c).

Proof. (1) Let f : A → R, and let c ∈ A be such that the sequence (xn) where xn ∈ A for

all n ∈ N has the property that xn → c. Suppose that f is continuous at c and let ε > 0 be

arbitrary. Since f is continuous at c, there exists some δ > 0 such that whenever x ∈ A and

|x − c| < δ, we are guaranteed that |f(x) − f(c)| < ε. Towards contradiction, assume that

limn→∞ f(xn) 6= f(c). Thus there exists some N ∈ N such that for all n ≥ N , |xn − c| < δ

and |f(xn)− f(c)| ≥ ε, which is a contradiction to our assumption that |f(x)− f(c)| < ε for

all x ∈ A. Thus f(xn)→ f(c) by contradiction.

Now suppose that f is not continuous at c. This implies that there exists some ε0 > 0

such that for all δ > 0, there exists some x0 ∈ A such that |x0−c| < δ and |f(x0)−f(c)| ≥ ε0.

For each n ∈ N, let δn = 1/n. This implies that there exists some xn ∈ A such that

|xn − c| < δn and |f(xn) − f(c)| ≥ ε0. Clearly, the sequence (xn) has the property that

xn → c, as for all ε > 0, there exists some N ∈ N such that for all n ≥ N , it follows that
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|xn − c| < δn < ε. Thus, the sequence (xn) has the property that xn → c and for all N ′ ∈ N
there exists some n0 ≥ N ′ such that |f(xn0)− f(c)| ≥ ε0. This proves that if xn → c (with

xn ∈ A), then f(xn) → f(c). Thus, f is continuous at c by the contrapositive. Therefore,

statement (1) of Theorem 2.13 holds if and only if f is continuous at c.

(2) We show that statement (1) is equivalent to statement (2). Using Definition 2.12,

limx→c f(x) = f(c) states that for all ε > 0, there exists a δ > 0 such that whenever

|x− c| < δ it follows that |f(x)− f(c)| < ε. This is equivalent to the statement “if xn → c

(with xn ∈ A), then f(xn) → f(c)” using Definition 2.11. Therefore, statement (1) is

equivalent to statement (2), proving Theorem 2.13 in its entirety. �

Theorem 2.14. The determinant function det : Mn(R)→ R is continuous.

Proof. The proof will proceed by induction on n. First, let n = 1. Since the determinant of

a 1 × 1 real matrix is simply the entry itself, the determinant function is continuous as it

just outputs the entry itself. Thus, the determinant function from M1(R) to R is continuous.

Now, assume that the determinant function from Mn(R) to R is continuous, with the goal of

proving that the determinant function from Mn+1(R) to R is continuous. Let A ∈Mn+1(R)

where

A =


a1,1 a1,2 · · · a1,n a1,n+1

a2,1 a2,2 · · · a2,n a2,n+1

...
...

. . .
...

...

an+1,1 an+1,2 · · · an+1,n an+1,n+1

 .
By the definition of the determinant, detA =

∑n+1
i=1 (−1)i+jai,jMi,j where Mi,j is the minor of

the i−jth entry. SinceMi,j is the determinant of a n×nmatrix for each i, j ∈ {1, 2, · · · , n+1},
detA is simply a sum of continuous functions multiplied by a real number, so detA is

continuous. Thus, the determinant function from Mn+1(R) to R is continuous, proving the

original statement by induction. �

Theorem 2.15. SLn(R) is a matrix group.

Proof. Let n ∈ N be arbitrary. We first prove that SLn(R) is a subgroup of GLn(R).

Let A,B ∈ SLn(R). Since det(AB) = det(A) det(B) and det(A) = 1 = det(B) since

A,B ∈ SLn(R), it follows that det(AB) = det(A) det(B) = 1(1) = 1. Thus AB ∈ SLn(R),

so SLn(R) is closed under matrix multiplication. Also, since det(In) = 1, In ∈ SLn(R).

Lastly, Since det(AA−1) = det(In) = 1 = det(A) det(A−1) and det(A) = 1, it follows that

det(A−1) = 1, so A−1 ∈ SLn(R). Thus SLn(R) is a subgroup of GLn(R).

Let (Am) be a sequence of matrices where Am ∈ SLn(R) for each m ∈ N and Am → A. Since

detAm = 1 for all m ∈ N and since the determinant is a continuous function by Theorem
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2.14, it follows by Theorem 2.13 that detA = 1 as well. Therefore, A ∈ SLn(R), so SLn(R)

is a matrix group. �

To understand the orthogonal group On(R), we will first cover what it means to be

orthogonal.

Definition 2.16. [6] The standard inner product on Rn is the function from Rn×Rn → R
defined by:

〈(x1, x2, . . . , xn), (y1, y2, . . . , yn)〉R := x1 · y1 + x2 · y2 + · · ·+ xn · yn.

Definition 2.17. [6] The standard norm on Rn is the function from Rn → R+ defined by

|x|R =
√
〈x, x〉R.

Definition 2.18. [6] Vectors x, y ∈ Rn are called orthogonal if 〈x, y〉 = 0.

Definition 2.19. A vector x ∈ Rn is called a unit vector |x| = 1.

Definition 2.20. A matrix A ∈ Mn(R) is said to be orthogonal if the column vectors of

A are orthogonal unit vectors.

Note that this definition is equivalent to stating that 〈xA, yA〉 = 〈x, y〉 for all x, y ∈ R.

This condition is known as an isometry condition, meaning that an orthogonal matrix is a

distance preserving linear transformation. It follows from the above definition alone that for

all orthogonal matrices A ∈ Mn(R), ATA = In = AAT where AT is the transpose of matrix

A, that is, if ai,j is the entry of A in the ith row and jth column of A, then ai,j is the entry

in the jth row and ith column of AT .

The following definition generalizes orthogonality over different fields.

Definition 2.21. [6] The orthogonal group over R is defined as

On(R) = {A ∈ GLn(R) | 〈xA, yA〉 = 〈x, y〉 for all x, y ∈ Rn}.

We reserve the proof that On(R) is a matrix group until the end of Section 3. The

following definitions and theorems will be useful throughout the paper in understanding

On(R).

Definition 2.22. [6] A set {x1, x2, . . . , xn} of Rn is called orthonormal if 〈xi, xj〉 = 1 when

i = j and 〈xi, xj〉 = 0 when i 6= j.

As an example, an orthonormal set of Rn, is the set

B = {e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)}.

The set B is called the standard orthonormal basis for Rn.
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Lemma 2.23. If A,B ∈Mn(R), then (AB)T = BTAT .

Proof. Let A,B ∈Mn(R) where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 and B =


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn

 .
The following equalities hold.

(AB)T =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann



b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn




T

=



a11b11 + · · ·+ a1nbn1 a11b12 + · · · a1nbn2 · · · a11b1n + · · ·+ a1nbnn

a21b11 + · · ·+ a2nbn1 a21b12 + · · · a2nbn2 · · · a21b1n + · · ·+ a2nbnn
...

...
. . .

...

an1b11 + · · ·+ annbn1 an1b12 + · · · annbn2 · · · an1b1n + · · ·+ annbnn




T

=


a11b11 + · · ·+ a1nbn1 a21b11 + · · ·+ a2nbn1 · · · an1b11 + · · ·+ annbn1

a11b12 + · · · a1nbn2 a21b12 + · · · a2nbn2 · · · an1b12 + · · · annbn2
...

...
. . .

...

a11b1n + · · ·+ a1nbnn a21b1n + · · ·+ a2nbnn · · · an1b1n + · · ·+ annbnn



=


b11 b21 · · · bn1

b12 b22 · · · bn2
...

...
. . .

...

b1n b2n · · · bnn



a11 a21 · · · an1

a12 a22 · · · an2
...

...
. . .

...

a1n a2n · · · ann


= BTAT

�

Theorem 2.24. If A ∈Mn(R), then (An)T = (AT )n.

Proof. Let A ∈ Mn(R). We proceed by induction on n. First, let n = 1. Clearly, (A1)T =

AT = (AT )1, so this case holds. Now, suppose that (An)T = (AT )n holds for some n ∈ N.

By Lemma 2.23, it follows that (AT )n+1 = (AT )nAT = (An)TAT = (AAn)T = (An+1)T .

Therefore, (An)T = (AT )n is true by the principle of mathematical induction. �
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Definition 2.25. [6] If A ∈ Mn(R), define RA : Rn → Rn and LA : Rn → Rn such that for

all x ∈ Rn,

RA(x) = x · A and LA(x) = (A · xT )T .

Theorem 2.26. For all A ∈ GLn(R), A ∈ On(R) if and only if A · AT = In.

Proof. Let A = [aij]n ∈ GLn(R) be arbitrary.

(=⇒) Suppose that A ∈ On(R). Since {e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en =

(0, 0, . . . , 1)} is an orthonormal basis for Rn and 〈x · A, y · A〉 = 〈x, y〉, it follows that

{RA(e1), RA(e2), . . . , RA(en)}

is an orthonormal set of vectors. {RA(e1), RA(e2), . . . , RA(en)} is precisely the set of row

vectors of A, where RA(ei) is the ith row of A. Notice that

(A · AT )ij = (row i of A) · (column j of AT )

= (row i of A) · (row j of A)

= 〈(row i of A), (row j of A)〉.

Thus, (A · AT )ij = 1 when i = j as 〈(row i of A), (row i of A)〉 = 〈RA(ei), RA(ei)〉 = 1 and

(A · AT )ij = 0 when i 6= j as 〈(row i of A), (row j of A)〉 = 〈RA(ei), RA(ej)〉 = 0. Thus,

A · AT = In.

(⇐=) Suppose thatA·AT = In. This implies that 〈RA(ei), RA(ei)〉 = 1 and 〈RA(ei), RA(ej)〉 =

0 when i 6= j. Let x, y ∈ Rn be arbitrary where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

We see that

〈x · A, y · A〉 = 〈RA(x), RA(y)〉

=

〈
n∑

i=1

xi(row i of A),
n∑

j=1

yj(row j of A)

〉

=
n∑

i=1

xi〈(row i of A), (row j of A)〉yi

= x1 · y1 + x2 · y2 + · · ·+ xn · yn

= 〈x, y〉.

Therefore, A ∈ On(R), proving the statement. �
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3. Topology of Matrix Groups

The goal of this section is to relate matrix groups with topologies, specifically with the

Euclidean topology Rn2
. To do so, a background in general topology and metric spaces is

needed.

Definition 3.1. [5] A topology on a non-empty set X is a collection T of subsets of X

having the following properties:

(1) ∅ and X are in T .

(2) The union of the elements of any subcollection of T is in T .

(3) The intersection of the elements of any finite subcollection of T is in T .

A set X for which a topology T has been specified is called a topological space, denoted

(X, T ).

Definition 3.2. [5] If (X, T ) is a topological space, we say that a subset U of X is an open

set of X if U belongs to the collection T . Similarly, if U is an open set containing some

point x ∈ X, then we say that U is a neighborhood of x.

Definition 3.3. A subset A of a topological space (X, T ) is said to be closed if the set

X − A is open in T .

We now turn our attention to a basis for a topology, which will help us create a better

understanding of building topologies on sets.

Definition 3.4. [5] If X is a non-empty set, a basis for a topology on X is a collection B
of subsets of X such that

(1) For each x ∈ X, there exists some B ∈ B such that x ∈ B.

(2) If x ∈ X such that x ∈ B1 ∩B2 for some B1, B2 ∈ B, there exists a B3 ∈ B such that

x ∈ B3 ⊂ B1 ∩B2.

If we have some topology T and B is a basis for T , then T is the collection of all

arbitrary unions of elements of B. A simple example of a topology and a basis is the real

numbers, which is explained in the following example.

Example 3.5. The collection B of open intervals in R, precisely defined as

B = {(a, b) | where a < b and a, b ∈ R},

is a basis for a topology on R.
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Proof. Let B be the collection of all open subsets of R, that is

B = {(a, b) | where a < b}.

To satisfy condition 1 of a basis, it is easy to see that for any x ∈ R, the open set (x−1, x+1) ∈
B contains x. For condition 2, let x ∈ X be such that x ∈ (a1, b1) ∩ (a2, b2) for some

(a1, b1), (a2, b2) ∈ B. Without loss of generality, assume that a1 < a2 and b1 < b2. Thus

x ∈ (a1, b1) ∩ (a2, b2) = (a2, b1) ∈ B, so B is in fact a basis. �

The union of the elements of B gives us the standard topology on R. The standard

topology on R is one of the most fundamental examples of a topology, and will be used to

associate matrix groups with topologies in the upcoming sections. Now we look to classify

distance within topologies, specifically Rn, through the use of a function called a metric.

Definition 3.6. [5] A metric on a non-empty set X is a function

d : X ×X → R

having the following properties:

(1) d(x, y) ≥ 0 for all x, y ∈ X; d(x, y) = 0 if and only if x = y.

(2) d(x, y) = d(y, x) for all x, y ∈ X.

(3) (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

The ultimate goal is to construct a topology using a metric, which will require generating

a basis using the following definition.

Definition 3.7. Let d be a metric on a set X and let x ∈ X. Given ε > 0, the set

Bd(x, ε) = {y | d(x, y) < ε and y ∈ X}

is called the ε-ball centered at x.

Definition 3.8. [5] If d is a metric on the set X, then the collection of all ε-balls Bd(x, ε),

for x ∈ X and ε > 0, is a basis for a topology on X, called the metric topology induced

by d.

One important example of a metric is called the Euclidean metric on Rn, which will be

useful when relating real matrix groups of size n with the space Rn2
.

Example 3.9. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. Let d : Rn × Rn → R be

the function defined as

d(x, y) = ||x− y|| =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

is a metric on Rn called the Euclidean metric.
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The proof of the example will require the use of the following lemma.

Lemma 3.10. [5] For all x, y ∈ Rn, |x · y| ≤ ‖x‖‖y‖.

Proof. First, suppose that x = 0̄ or y = 0̄. We see that |x ·y| = 0 ≤ 0 = ‖x‖‖y‖, so our claim

holds in this case. Now, suppose that x 6= 0̄ and y 6= 0̄. Let ao = 1
‖x‖ and bo = 1

‖y‖ . First

note that 0 ≤ ‖ax ± by‖ for all a, b ∈ R. Through the use of this inequality after squaring

both sides, the following inequalities hold.

0 ≤
∥∥∥∥ 1

‖x‖
x± 1

‖y‖
y

∥∥∥∥2

=

√( 1

‖x‖
x1 ±

1

‖y‖
y1

)2

+ · · ·+
(

1

‖x‖
xn ±

1

‖y‖
yn

)2
2

=
1

‖x‖2
x21 ±

2

‖x‖‖y‖
x1y1 +

1

‖y‖2
y21 + · · ·+ 1

‖x‖2
x2n ±

2

‖x‖‖y‖
xnyn +

1

‖y‖2
y2n

=
1

‖x‖2
(x21 + · · ·+ x2n)± 2

‖x‖‖y‖
(x1y1 + · · ·+ xnyn) +

1

‖y‖2
(y21 + · · ·+ y2n)

=
1

‖x‖2
‖x‖2 ± 2

‖x‖‖y‖
(x · y) +

1

‖y‖2
‖y‖2

= 2± 2

‖x‖‖y‖
(x · y).

This implies that ∓ 1
‖x‖‖y‖(x · y) ≤ 1, which implies that |x · y| ≤ ‖x‖‖y‖, proving the

statement. �

We will now use this lemma in Example 3.9, shown below. Example 3.9 is stated again

for convenience.

Example 3.9. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. Let d : Rn × Rn → R be

the function defined as

d(x, y) = ||x− y|| =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

is a metric on Rn called the Euclidean metric.

Proof. Let d : Rn × Rn → R be the function defined as

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

We will show that d satisfies the three conditions given in Definition 3.6

(1) Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. Since (xi − yi)
2 ≥ 0 for all

i ∈ {1, 2, . . . , n}, it immediately follows that d(x, y) ≥ 0. If x = y, then

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2
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=
√

(x1 − x1)2 + (x2 − x2)2 + · · ·+ (xn − xn)2

= 0.

If d(x, y) = 0, then (x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 = 0, so (xi − yi) = 0 for

all 1 ≤ i ≤ n, implying that xi = yi for all 1 ≤ n ≤ n. Thus x = y.

(2) We have

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

=
√

(y1 − x1)2 + (y2 − x2)2 + · · ·+ (yn − xn)2

= d(y, x).

(3) Let us consider ‖x + y‖2. Recall the definition of a standard inner product from

Definition 2.16; the following equalities hold.

‖x+ y‖2 = (x+ y) · (x+ y)

= (x1 + y1)
2 + · · ·+ (xn + yn)2

= x21 + 2x1y1 + y21 + · · ·+ x2n + 2xnyn + y2n

= (x21 + · · ·+ x2n) + 2(x1y1 + · · ·+ xnyn) + (y21 + · · ·+ y2n)

= (x · x) + 2(x · y) + (y · y)

= ‖x‖2 + 2(x · y) + ‖y‖2.

Through our knowledge of absolute values and though the use of Lemma 3.10, we see

that this implies

‖x+ y‖2 = ‖x‖2 + 2(x · y) + ‖y‖2

≤ ‖x‖2 + 2|x · y|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2.

Taking the square root of both sides of the inequality above, we get ‖x + y‖ ≤
‖x‖+ ‖y‖.
Now let z = (z1, z2, . . . , zn) ∈ Rn. We see that d(x, y) = ‖x− y‖ = ‖x− z+ z− y‖ ≤
‖x− z‖+ ‖z − y‖ = d(x, z) + d(z, y).

Therefore, d is a metric on Rn �

The metric space induced by the Euclidean metric on Rn is known as the Euclidean

topology on Rn. The Euclidean topology on Rn is the topology that we need to relate Rn

and Mm(R) with each other.
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To relate Rn and Mm(R) to each other, we can create a one-to-one correspondence

between Rn2
and Mn(R) by creating the bijective function φ : Rn2 →Mn(R) defined as

φ(x) = φ((x11, x12, . . . , x1n, x21, x22, . . . , xnn) =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xn1 xn2 · · · xnn

 .
Thus, we can actually talk about the Euclidean space Rn2

and still work with matrices,

which allows us to study the geometry and topologies of matrix groups through the use of

the Euclidean metric and the subspace topology applied to the Euclidean topology.

The definition of the subspace topology is given below.

Definition 3.11. Let (X, T ) be a topological space. If Y is a subset of X, the collection

TY = {Y ∩ U | U ∈ T }

is a topology on Y , called the subspace topology. With this topology, Y is called a

subspace of X.

Thus, the topologies of matrix groups are structurally equivalent to subspace topologies

of the Euclidean topology.

With an understanding of the topology of matrix groups, we are poised to understand

the proof that On(R) is a matrix group. The following definition and theorems will be used

in the proof that On(R) is a matrix group.

Theorem 3.12. [5] Let (Y, TY ) be a subspace of (X, T ). Then a set A is closed in Y if and

only if it equals the intersection of a closed set of X with Y .

Proof. Let (Y, TY ) be a subspace of (X, T ). Let A be closed in Y . Thus, Y − A ∈ TY , so

Y − A = U ∩ Y where U ∈ T . Since X − U is closed in X and A = Y ∩ (X − U), A is the

intersection of Y with a closed set of X.

Now let A ⊂ Y be such that A = C ∩ Y where C is closed in X. Then X − C ∈ T ,

so Y ∩ (X − C) ∈ TY . Since (X − C) ∩ Y = Y − A, Y − A ∈ TY , so A is closed in Y , as

desired. �

Definition 3.13. [5] Let (X, T ) and (Y, T ′) be topological spaces. A function f : X → Y

is said to be continuous if for each open subset V of Y , the set f−1(V ) is an open subset

of X.

Theorem 3.14. [5] Let (X, T ) and (Y, T ′) be topological spaces; let f : X → Y . If f is

continuous, then for every closed subset B of Y , the set f−1(B) is closed in X.
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Proof. Let (X, T ) and (Y, T ′) be topological spaces and let f : X → Y . Suppose that f is

continuous and let B be a closed set of Y . Since Y −B ∈ T ′, and f is continuous, f−1(Y −B)

is open in T . Since f−1(Y − B) = f−1(Y )− f−1(B) = X − f−1(B), it follows that f−1(B)

is closed in X, as desired. �

Theorem 3.15. On(R) is a matrix group.

Proof. Let n ∈ N be fixed; we will first show that On(R) is a group. First, note that the

identity matrix In is in On(R) since for any x, y ∈ Rn, 〈xIn, yIn〉 = 〈x, y〉. Second, note that

On(R) inherits inverses from GLn(R) since for any M ∈ On(R), M−1 = MT , so M−1 is or-

thogonal since M−1(M−1)T = MT (MT )T = In and (M−1)TM−1 = (MT )TMT = In. Lastly,

orthogonal matrices are closed under multiplication since for any A,B ∈ On(R), (AB)T =

BTAT and thus AB(AB)T = ABBTAT = AAT = In and (AB)TAB = BTATAB = BTB =

In. Thus, On(R) is a subgroup of GLn(R).

Since for all matricesN,M ∈Mn(R), det(N) = det(NT ) and det(N) det(M) = det(NM),

it follows that if A ∈ On(R), then det(A)2 = det(AA) = det(AAT ) = det(In) = 1, so

det(A) = ±1. Now, define T : GLn(R) → GLn(R) by T (X) = XXT for all X ∈ GLn(R).

It is clear that T is continuous since, for all X ∈ GLn(X) where X = [xij], the i − jth

entry of T (X) is simply
∑n

k=1 xikxjk, which is a polynomial function in R. Thus, since

T−1({In}) = On(R) and one-point sets are closed in Rn2
, {In} is closed in GLn(R) by Theo-

rem 3.12, so it follows by Theorem 3.14 that On(R) is closed in GLn(R). Therefore, On(R)

is a matrix group. �

4. Lie Algebras

Definition 4.1. [6] Let M ⊂ Rm and let x ∈M . The tangent space to M at x is defined

as

TxM := {γ′(0) | γ : (−ε, ε)→M is differentiable with γ(0) = x}.

The function γ : (−ε, ε) → M in the previous definition is referred to commonly as a

path through the point x. Thus, the tangent space to M ⊂ Rm at x is the collection of slopes

of all paths such that each component function of γ is differentiable from (−ε, ε) to R.

Due to the correlation stated in Section 3 between Mn(R) and Rn2
, we are able to

consider matrix groups as subsets of the Euclidean space. This gives us the ability to talk

about tangent spaces of matrix groups, which gives us the definition of a Lie algebra, given

below.
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γ(t)

υ x

TxM

M

Figure 4.1. A visualization of the tangent space TxM .

Definition 4.2. [6] The Lie algebra of a matrix group G ⊂ GLn(R) is the tangent space

to G at the identity matrix In. We denote the Lie Algebra of G as g := g(G) := TInG.

In Theorem 4.4, we prove that the Lie algebras of matrix groups are subspaces of Mn(R).

To do so, we will use the product rule for paths in Mn(R), which is the subject of the following

theorem.

Theorem 4.3. [6] If γ, β : (−ε, ε)→Mn(R) are differentiable, then the product path

(γ · β)(t) := γ(t) · β(t) is differentiable. Furthermore,

(γ · β)′(t) = γ(t) · β′(t) + γ′(t) · β(t).

Proof. Let γ, β : (−ε, ε)→Mn(R) be differentiable. When n = 1, then we have the product

rule from calculus. Since

((γ · β)(t))ij =
n∑

l=1

γ(t)il · β(t)lj

and γ(t)il · β(t)lj is a product of functions from (−ε, ε) to R, it follows that

((γ · β)′(t))ij =
n∑

l=1

γ(t)il · β′(t)lj + γ′(t)il · β(t)lj

= (γ(t) · β′(t))ij + (γ′(t) · β(t))ij.

�

Theorem 4.4. [6] The Lie algebra g of a matrix group G ⊂ GLn(R) is a real subspace of

Mn(R).
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Proof. Let G ⊂ GLn(R) be an arbitrary matrix group. To prove that g is a subspace of

Mn(R), we need to prove that g is closed under scalar multiplication and matrix addition.

Thus, let λ ∈ R and and let A ∈ g, so A = γ′(0) where γ : (−ε, ε) → Rn is a differentiable

path such that γ(0) = In. Let σ : (−λε, λε) → Rn be the path defined as σ(t) := γ(λ · t)
for all t ∈ (−λε, λε). Since σ′(t) = λ · γ′(λ · t), it follows that σ′(0) = λ · A. Thus, since

σ(0) = γ(λ · 0) = In, we can conclude that λ · A ∈ g.

Next, let A,B ∈ g. Thus, A = γ′(0) and B = β′(0) where γ : (−ε1, ε1) → Rn and

β : (−ε2, ε2)→ Rn are differentiable paths such that γ(0) = β(0) = In. Let ε = min{ε1, ε2}.
Let π : (−ε, ε)→ Rn be the product path defined as π(t) := γ(t) · β(t) for all t ∈ (−ε, ε). By

Theorem 4.3, we know that π is a differentiable path that lies in G with

π′(0) = γ(0) · β′(0) + γ′(0) · β(0) = In ·B + A · In = A+B.

Therefore A+B ∈ g, proving that g is a real subspace of Mn(R). �

Since Lie algebras are vector spaces over R, we are able to classify matrix groups and

their Lie algebras according to their basis.

Definition 4.5. The dimension of a matrix group G is the dimension of its Lie algebra.

In order to give examples of Lie algebras g of matrix group G ⊂ GLn(R), we must

construct paths γA : (−ε, ε) → G for each A ∈ G such that γ(0) = In and γ′(0) = A. The

simplest way to accomplish this is to use a function called matrix exponentiation, which

requires a few definitions to understand the beautiful simplicity of the concept.

Definition 4.6. [6] A vector field is a continuous function F : Rm → Rm.

Definition 4.7. [6] An integral curve of a vector field F : Rm → Rm is a path α : (−ε, ε)→
Rm such that α′(t) = F (α(t)) for all t ∈ (−ε, ε).

Intuitively, the vector field F : Rm → Rm gives the value of the tangent vector to every

point on the path α : (−ε, ε)→ Rm. Surprisingly, matrix exponentiation gives us an integral

curve for every element in the Lie algebra of a matrix group.

As matrix exponentiation is defined by power series of matrices, we will introduce terms

and results that refer to series in Mn(R).

Definition 4.8. Let A ∈Mn(R) where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann
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The Euclidean norm of A, denoted |A|, is defined as

|A| =
√

(a11)2 + · · ·+ (a1n)2 + (a21)2 + · · ·+ (a2n)2 + · · ·+ (an1)2 + · · ·+ (ann)2.

The Euclidean norm of a matrix is better understood as the square root of the sum of

squares of the entries of the matrix.

Definition 4.9. Let Ai ∈Mn(R) for all i ∈ Z∗. We say that the series Σ∞i=0Ai = A0 +A1 +

A2 + · · · converges (absolutely) if, for all i, j ∈ Z∗, (A0)ij +(A1)ij +(A2)ij + · · · converges

(absolutely) to some (A)ij ∈ R. This is denoted as Σ∞i=0Ai = A.

To prove a result concerning absolute convergence of a series, the following lemma will

be used.

Lemma 4.10. For all X, Y ∈Mn(R), |XY | ≤ |X| · |Y |.

Proof. Let X, Y ∈ Mn(R) be arbitrary. Recall that for all x, y ∈ Rn, |〈x, y〉| ≤ |x| · |y| (the

Schwarz inequality). Using the Schwarz inequality, it follows that for all indices i, j,

|(XY )ij|2 =

∣∣∣∣∣
n∑

l=1

XilYlj

∣∣∣∣∣
2

=
∣∣〈(row i of X), (column j of Y )T 〉

∣∣2
≤ |(row i of X)|2 ·

∣∣(column j of Y )T
∣∣2

=

(
n∑

l=1

|Xil|2
)
·

(
n∑

l=1

|Ylj|2
)
.

Thus it follows that

|XY |2 =
n∑

i,j=1

|(XY )ij|2

≤
n∑

i,j=1

((
n∑

l=1

|Xil|2
)
·

(
n∑

l=1

|Ylj|2
))

=

(
n∑

i,j=1

|Xij|2
)
·

(
n∑

i,j=1

|Yij|2
)

= |X|2 |Y |2 .

Taking the square root of this equation, we get |XY | ≤ |X| · |Y |, as desired. �

Theorem 4.11. [6] Let f(x) = c0 + c1x + c2x
2 + · · · =

∑∞
i=1 cix

i be a power series with

coefficients ci ∈ R and a radius of convergence R. If A ∈ Mn(R) satisfies |A| < R, then

f(A) = c0In + c1A+ c2A
2 + · · · =

∑∞
i=1 ciA

i converges absolutely.
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Proof. Let f(x) = c0 + c1x + c2x
2 + · · · be a power series with coefficients ci ∈ R with a

radius of convergence R. Let A ∈ Mn(R) be such that |A| < R. For any indices i, j, we

must show that |(c0In)ij| + |(c1A)ij| + |(c2A2)ij| + · · · converges. For any k ∈ N, it follows

by Lemma 4.10 that ∣∣(ckAk)ij
∣∣ ≤ ∣∣ckAk

∣∣ = |ck| ·
∣∣Ak
∣∣ ≤ |ck| · |A|k .

Since |A| < R, it follows that |(c0In)ij| + |(c1A)ij| + |(c2A2)ij| + · · · converges, so f(A) =

c0In + c1A+ c2A
2 + · · · converges absolutely. �

Through the use of Theorem 4.11, we are able to rigorously define matrix exponentiation.

Definition 4.12. Let A ∈Mn(R). The matrix exponentiation of A is the function

eA = exp(A) = In + A+
1

2!
A2 +

1

3!
A3 + · · · =

∞∑
i=1

1

i!
Ai.

Those with sufficient calculus knowledge will recall that the radius of convergence for

the power series of ex is infinite, so eA converges absolutely for all A ∈ Mn(R) by Theorem

4.11.

Also, considering the function γ : (−ε, ε) → Mn(R) defined as γ(t) = etA = In + tA +
1
2!

(tA)2 + 1
3!

(tA)3 + · · · , it follows that γ(0) = e0A = In +0A+ 1
2!

(0A)2 + 1
3!

(0A)3 + · · · = In, so

γ(t) = etA is indeed a path. In fact, γ(t) = etA is one of the most useful paths when trying

to define Lie algebras of matrix groups. The following theorems will help us understand the

power of matrix exponentiation.

Theorem 4.13. [6] The path γ(t) = etA = In+tA+ 1
2!

(tA)2+ 1
3!

(tA)3+· · · , where A ∈Mn(R),

is differentiable with derivative γ′(t) = A · etA.

Proof. Let A ∈ Mn(R) and let the function γ : (−ε, ε)→ Mn(R) be defined as γ(t) = etA =

In + tA + 1
2!

(tA)2 + 1
3!

(tA)3 + · · · for all t ∈ (−ε, ε). By Theorem 4.11, we know that γ(t)

is absolutely convergent, so we can take the derivative of γ(t). Thus, through term-by-term

differentiation, it follows that for all t ∈ (−ε, ε),

γ′(t) =
d

dt

(
In + tA+

1

2!
(tA)2 +

1

3!
(tA)3 + · · ·

)
= A+ tA2 +

1

2!
t2A3 + · · · = A · etA.

�

Theorem 4.14. Let A,B ∈Mn(R). If AB = BA, then eA+B = eAeB.

Proof. Let A,B ∈Mn(R) be such that AB = BA. Due to the commutativity of A and B,

(A+B)k = (A+B)(A+B)(A+B) · · · (A+B)
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= (A2 + AB +BA+B2)(A+B) · · · (A+B)

= (A2 + 2AB +B2)(A+B) · · · (A+B)

= (A3 + A2B + 2ABA+ 2AB2 +B2A+B3) · · · (A+B)

= (A3 + 3A2B + 3AB2 +B3) · · · (A+B)

...

= Ak + kAk−1B +

(
k

2

)
Ak−2B2 + · · ·+

(
k

k − 1

)
ABk−1

=
k∑

r=0

(
k

r

)
Ak−rBr.

The following equalities hold.

eA+B = In + A+B +
1

2!
(A+B)2 +

1

3!
(A+B)3 + · · ·

=
∞∑
i=0

1

i!
(A+B)i

=
∞∑
i=0

1

i!

(
i∑

j=0

(
i

j

)
Ai−jBj

)

=
∞∑
i=0

1

i!

(
i∑

j=0

i!

(i− j)!j!
Ai−jBj

)

=
∞∑
i=0

(
i∑

j=0

1

(i− j)!j!
Ai−jBj

)

= In + A+B +
1

2!
A2 + AB +

1

2!
B2 +

1

3!
A3 +

1

2!
A2B +

1

2!
AB2 +

1

3!
B3 + · · ·

=

(
∞∑
k=0

1

k!
Ak

)(
∞∑
k=0

1

k!
Bk

)
= eAeB.

�

Now, using Theorems 4.13 and 4.14, we will find the Lie algebras for GLn(R), On(R),

and SLn(R). When referring to the Lie algebra of a matrix group, we write the Lie algebra

in lower case letters. For example, the Lie algebra of GLn(R) is typically denoted gln(R).

Theorem 4.15. Mn(R) is the Lie algebra of GLn(R).

Proof. Let A ∈Mn(R). By Theorem 4.14, eA · e−A = eA−A = e0 = In, so eA is invertible and

thus eA ∈ GLn(R). Let γ : (−ε, ε)→ GLn(R) be defined as γ(t) = etA for all t ∈ (−ε, ε). By
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Theorem 4.14, etA · e−tA = etA−tA = e0 = In, so etA ∈ GLn(R) as well. Since γ(0) = In and

γ′(0) = A, it follows that A ∈ gln(R) and thus Mn(R) ⊂ gln(R).

For the other direction, since the paths γ(t) are all n × n matrices, their derivatives

at 0 are n × n matrices as well, so g(GLn(R)) ⊂ Mn(R). Therefore, by double inclusion,

Mn(R) = gln(R). �

Notation. on(R) = {A ∈Mn(R) | A+ AT = 0}

Lemma 4.16. If A ∈ on(R), then eA ∈ On(R).

Proof. Let A ∈ on(R). By Theorem 2.24, we see that

(eA)T =

(
∞∑
n=0

An

n!

)T

=
∞∑
n=0

(An)T

n!
=
∞∑
n=0

(AT )n

n!
= eA

T

.

Since A ∈ on(R), AT = −A. Thus,

eA(eA)T = eAeA
T

= eAe−A = eA−A = e0 = In.

By Theorem 2.26, it follows that eA ∈ On(R). �

Theorem 4.17. on(R) is the Lie algebra of O(R).

Proof. First, let A ∈ on(R). By Lemma 4.16, it follows that the path γ(t) = etA ∈ On(R).

Since γ(0) = In and γ′(0) = A, it follows that A ∈ g(On(R)), so on(R) ⊂ g(On(R)).

Next, let B ∈ g(On(R)). Thus, there exists some path σ : (−ε, ε) → On(R) such that

σ(t) ∈ On(R) for all t ∈ (−ε, ε), σ(0) = In and σ′(0) = B. Since σ(t) ∈ On(R) for all

t ∈ (−ε, ε), σ(t) · σ(t)T = In by Theorem 2.26. Using the product rule for differentiation, it

follows that
d

dt

(
σ(t) · σ(t)T

)
= σ′(t) · σ(t)T + σ(t) · σ′(t)T ,

and since σ(t) · σ(t)T = In, we get that

d

dt

(
σ(t) · σ(t)T

)
=

d

dt
(In) = 0.

When t = 0, we get

0 =
d

d0

(
σ(0) · σ(0)T

)
= σ′(0) · σ(0)T + σ(0) · σ′(0)T

= B · In + In ·BT

= B +BT

Thus, B ∈ on(R), which demonstrates that g(On(R)) ⊂ on(R). Therefore, on(R) is the Lie

algebra of O(R). �
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Lemma 4.18 will help in finding the Lie algebra of SLn(R). First, we introduce notation

that will be used in the proof of Lemma 4.18.

Notation. Let A ∈ Mn(R). We denote A[i, j] ∈ Mn(R) as the matrix obtained by crossing

out row i and column j of A. For example,a b c

d e f

g h i

 [1, 1] =

[
e f

h i

]
.

Lemma 4.18. [6] If γ : (−ε, ε)→Mn(R) is differentiable and γ(0) = In, then

d

dt

∣∣∣∣
t=0

det(γ(t)) = trace(γ′(0)),

where trace(γ′(0)) is the sum of the entries of the main diagonal of γ′(0).

Proof. Let γ : (−ε, ε)→Mn(R) be differentiable with γ(0) = In

d

dt

∣∣∣∣
t=0

det(γ(t)) =
d

dt

∣∣∣∣
t=0

n∑
j=1

(−1)j+1 · γ(t)1j · det(γ(t)[1, j])

=
n∑

j=1

(−1)j+1 ·
(
γ′(0)1j · det(γ(0)[1, j]) + γ(0)1j ·

d

dt

∣∣∣∣
t=0

det(γ(0)[1, j])

)

= γ′(0)11 +
d

dt

∣∣∣∣
t=0

det(γ(0)[1, 1]).

Computing d
dt

∣∣
t=0

det(γ(0)[1, 1]) through the same argument n times, we get

d

dt

∣∣∣∣
t=0

det(γ(t)) = γ′(0)11 + γ′(0)22 + · · ·+ γ′(0)nn

= trace(γ′(0)).

�

Theorem 4.19. [6] The Lie algebra of SLn(R) is

sln(R) = {A ∈Mn(R) | trace(A) = 0}.

Proof. Let A ∈ g(SLn(R)). Thus, there exists some path γ : (−ε, ε)→ SLn(R) such that γ

is differentiable, γ(0) = In, and γ′(0) = A. By Lemma 4.18, it follows that trace(γ′(0)) =

trace(A) = 0. This shows that A ∈ sln(R) = {A ∈ Mn(R) | trace(A) = 0}, so g(SLn(R)) ⊂
sln(R).
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On the other hand, let B ∈Mn(R) be such that trace(B) = 0. Let σ : (−ε, ε)→ SLn(R) be

defined as

σ(t) =


ta11+1

det(In+tB)
ta12

det(In+tB)
· · · ta1n

det(In+tB)

ta21 ta22 + 1 · · · ta2n
...

...
. . .

...

tan1 tan2 · · · tann + 1


Note that σ(0) = In and

σ′(t) =


a11(det(In+tB))−(ta11+1)( d

dt
det(In+tB))

det(In+tB)2
· · · a1n(det(In+tB))−(ta1n+1)( d

dt
det(In+tB))

det(In+tB)2

a21 · · · a2n
...

. . .
...

an1 · · · ann

 .
Thus, by Lemma 4.18,

σ′(0) =


a11(det(In+(0)B))−((0)a11+1)(trace(B))

det(In+(0)B)2
· · · a1n(det(In+(0)B))−((0)a1n+1)(trace(B))

det(In+(0)B)2

a21 · · · a2n
...

. . .
...

an1 · · · ann



=


a11(1)−((0)a11+1)(0)

12
· · · a1n(1)−((0)a1n+1)(0)

12

a21 · · · a2n
...

. . .
...

an1 · · · ann


= A

Since

det(In + tB) =
n∑

j=1

(−1)j+1 · (In + tB)1j · det((In + tB)[1, j]),

it follows that

det(σ(t)) =
n∑

j=1

(−1)j+1 · (In + tB)1j ·
1

det(In + tB)
· det((In + tB)[1, j])

=
1

det(In + tB)
·

(
n∑

j=1

(−1)j+1 · (In + tB)1j · det((In + tB)[1, j])

)

=
1

det(In + tB)
· (det(In + tB))

= 1.



MATRIX GROUPS AND THEIR LIE ALGEBRAS 23

Thus, σ(t) ∈ SLn(R) for all t ∈ (−ε, ε), and since σ′(0) = A, A ∈ g(SLn(R). Therefore,

sln(R) ⊂ g(SLn(R), so sln(R) = g(SLn(R). �

5. Manifolds and Lie Groups

Topologically, manifolds are abstract spaces, but around every point there is a neighbor-

hood that looks and acts like Euclidean space. Due to this criterion, manifolds are important

in the study of space as they provide a nice way to characterize and work with abstract struc-

tures since working with Euclidean space is simpler. Also, Lie groups are manifolds with

more criteria attached, which is why we must first discuss manifolds before our discussion of

Lie groups.

We must first go over a few fundamental theorems that will prove to be useful in later

proofs.

Notation. Let Br := {W ∈Mn(R) | |W | < r}.

Theorem 5.1. [6] Let G ⊂ GLn(R) be a matrix group, with Lie algebra g ⊂ gln(R).

(1) For all X ∈ g, eX ∈ G.

(2) For sufficiently small r > 0, V := exp(Br ∩ g) is a neighborhood of In in G, and the

restriction exp : Br ∩ g→ V is a diffeomorphism (see Definition 5.7).

The proof of Theorem 5.1 requires delving into the world of analysis and is rather

lengthy, and is therefore beyond the scope of this paper. The proof of Theorem 5.1 can be

found in Tapp’s Matrix Groups for Undergraduates [6], and is worth studying to understand

the inner workings of matrix groups.

Going forwards, we look to define manifolds and prove that all matrix groups are man-

ifolds, the proof of which relies heavily on Theorem 5.1. First we will add some more defi-

nitions to our stockpile, specifically those that pertain to functions in a topological space.

Let U ⊂ Rn be an open set in the Euclidean topology on Rn. Any function f : U → Rm

can be thought of as m separate functions, that is, f = (f1, f2, . . . , fm) where fi : U → R for

each i ∈ {1, 2, . . . ,m}. An example of such a function would be the function h : R2 → R3

defined as h(x, y) = (xy, x2 − y2, x3 + y) for all x, y ∈ R2, which is defined by the separate

functions h1, h2, h3 : R2 → R3 where h1(x, y) = xy, h2(x, y) = x2− y2, and h3(x, y) = x3 + y.

Definition 5.2. Let U ⊂ Rn be an open set in the standard topology on Rn and let

f : U → Rm be a function. Let p ∈ U and let v ∈ Rn. The directional derivative

of f in the direction v at p is defined as:

dfp(v) := lim
t→0

f(p+ tv)− f(p)

t
,
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if this limit exists.

Consider the straight line g(t) = p + tv in Rn. Visually, dfp(v) is the initial velocity

vector of (f ◦ g)(t) = f(p + tv), if this velocity vector exists. In this sense, dfp(v) can be

thought of as an approximation of where the function f sends points near p in the direction

of v.

p v g(t)

p

df (v)p (f g)(t)Rn m

Figure 5.1. dfp(v) is the initial velocity vector of (f ◦ g)(t) in the direction of v.

The following proposition is a more intuitive understanding of Definition 5.2.

Proposition 5.3. dfp(v) is the initial velocity vector of the image under f of any differen-

tiable path γ(t) in Rm with γ(0) = p and γ′(0) = v.

Definition 5.4. [6] Let U ⊂ Rn be an open set in the standard topology on Rn and

let f : U → Rm be a function. The directional derivatives of the component functions

{f1, f2, . . . , fm} in the directions of the standard orthonormal basis vectors {e1, e2, . . . , en}
of Rn are called partial derivatives of f and are denoted as

∂fi
∂xj

(p) := d(fi)p(ej).

Directional derivatives of a function f measure the rates of change of each of the com-

ponent functions of f . If we fix i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n} and if ∂fi
∂xj

(p) exists for

all p ∈ U , then the function g : U → Rm defined as g(p) = ∂fi
∂xj

(p) is a well-defined function

from U to Rm, so we can take the partial derivatives of g. If the partial derivatives of g exist,

they are called the second order partial derivatives of f . Following in this matter, if we take

r partial derivatives of a function f and the partial derivatives exits, then we say that they

are the rth order partial derivatives of f . This gives rise to the following definition.
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Definition 5.5. [6] Let U ⊂ Rn be an open set in the standard topology on Rn and let

f : U → Rm be a function. The function f is called Cr on U if all rth order partial

derivatives exist and are continuous on U , and f is called smooth on U if f is Cr on U for

all positive integers r.

Similarly, we can define smoothness for any set X ⊂ Rn, not just open sets.

Definition 5.6. [6] If X ⊂ Rn, then f : X → Rn is called smooth if for all p ∈ X, there

exists an open neighborhood U of p in Rm and a smooth function f̃ : U → Rn which agrees

with f on X ∩ U .

Using this more general definition of smoothness, we can create a type of similarity

between subsets of Rn, which will allow us to define a manifold in Rn.

Definition 5.7. [6] X ⊂ Rn and Y ⊂ Rm are called diffeomorphic if there exists a smooth

bijective function f : X → Y whose inverse is also smooth. In this case, f is called a

diffeomorphism.

Definition 5.8. [6] A subset M ⊂ Rm is called a manifold of dimension n if for all p ∈M
there exists a neighborhood U of p in M which is diffeomorphic to an open set V ⊂ Rn.

p

U

V

M Rn

f(U)

Figure 5.2. A visualization of a manifold of dimension n.

To prove that a set M is a manifold, we need to construct a parametrization at every

point p ∈M , which is a diffeomorphism φ from an open set V ⊂ Rn to a neighborhood U of

p ∈M . We use this method to prove that any matrix group is a manifold.

Theorem 5.9. Any matrix group is a manifold.
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Proof. Let G ⊂ GLn(R) be a matrix group with Lie algebra g. Choose a sufficiently small

r > 0 which is guaranteed by Theorem 5.1. Thus, V := exp(Br ∩ g) is a neighborhood of In

in G, and the restriction map exp : Br ∩ g→ V is a diffeomorphism, so exp : Br ∩ g→ V is

a parametrization at In.

Next, let g ∈ G be arbitrary. Define the function Lg : G → G as Lg(A) = g · A for all

A ∈ G. Lg is injective because if g · A = g · B for some A,B ∈ G, then A = B through left

multiplication by g−1. Also, Lg is surjective because, for all C ∈ G, Lg(g
−1 · C) = C, so Lg

is bijective. Since matrix multiplication from Mn(R)×Mn(R)→ Mn(R) can be thought of

as a function with n2 component functions, it follows that Lg is smooth as each component

function is a polynomial over R, so all rth order partial derivatives exist and are continuous on

G. Also, since G is a group, g−1 exists. Thus, the inverse function of Lg is L−1g (B) = g−1 ·B,

which is also smooth through the same reasoning. Thus, Lg is a diffeomorphism from G to

G, so Lg(V ) in particular is a neighborhood of g in G as Lg maps open neighborhoods to

open neighborhoods being a diffeomorphism. Therefore, (Lg ◦ exp) : Br ∩ g → Lg(V ) is a

parametrization at g as the composition of diffeomorphisms is diffeomorphic, proving that

G is a manifold. �

We are now able to move on to the high point of this section.

Definition 5.10. A Lie group is a manifold, G, with a smooth group operation G×G→ G

and a smooth inverse map.

Theorem 5.11. All matrix groups are Lie groups.

Proof. Let G ⊂ GLn(R) be a matrix group. From Theorem 5.9, we know that G is a

manifold. Also, from the proof of Theorem 5.9, we know that matrix multiplication over

matrix groups is smooth, so the group operation of G is smooth. Further, the inverse map

of G is the function ι : G→ G defined as ι(A) = 1
det(A)

adj(A), which is smooth as this is also

just a calculation of polynomials in R (this is a standard result from linear algebra). This

shows that G is a Lie group, proving the statement. �

6. Conclusion

Momentarily diverting from explaining the ramifications of Theorem 5.11, a direct ex-

ample of matrix groups in practice is demonstrated through an application to computer

animation. Suppose that we are given some smiley face graphic, properly named “Smiley”.

Our goal is to transform Smiley into an upside-down smiley face and then return them back

to their original position. If we consider Smiley as a set of points in R2, then we can multiply

Smiley as a whole by a matrix that corresponds to rotations in R2. If we don’t like Smiley in
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[h][
cos(120◦) − sin(120◦)

sin(120◦) cos(120◦)

]
→

[
cos(120◦) − sin(120◦)

sin(120◦) cos(120◦)

]−1
→

Figure 6.1. Smiley being rotated through matrix multiplication.

their new orientation, we can then multiply Smiley by the inverse of that matrix to return

them back to their original position.

Since the matrix given in Figure 6.1 is a member of the matrix group SO2(R), the

matrix group of all 2×2 orthogonal matrices with determinant equal to 1, we know that the

matrix has an inverse that is also in SO2(R). Therefore, we can rotate Smiley around and be

sure that we can return Smiley back to their original position through another multiplication

operation. If SO2(R) was not a group, it is not certain that such an inverse would exist.

The inferences of the importance of all matrix groups being Lie groups in the study of

Lie theory in general can be understood from the following two theorems.

Theorem 6.1. Every compact Lie group is smoothly isomorphic to a matrix group.

Theorem 6.2. The Lie algebra of any Lie group is isomorphic to the Lie algebra of a matrix

group.

The proof of these two theorems are beyond the scope of this paper, but the significance

of them can be felt none the less. The physical world is represented by real numbers, and

so are matrix groups (or at least some of them). Thus, matrix groups are the medium to

studying Lie theory as it pertains to the physical world. Modeling physical phenomenon as

matrices and studying the Lie structure of those matrices allows us to use results from Lie

theory and apply them to our physical phenomenon to understand the structure of these

events. Matrix groups are the vehicle by which developments in understanding the physical

world travel, and by first understanding matrix groups we are one step closer to a better

understanding of the physical and mathematical realms which Lie theory pertains.
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Appendix

Linear Algebra.

Definition 1. [2] Let V be an arbitrary nonempty set of elements on which two operations

are defined: addition, and multiplication by numbers called scalars. By addition we mean

a rule for associating with each pair of objects u and v in V an object u+ v, called the sum

of u and v; by scalar multiplication we mean a rule for associating with each scalar k

and each object u in V an object ku, called the scalar multiple of u by k. If the following

axioms are satisfied by all objects u, v, w in V and all scalars k and m, then we call V a

vector space and we call the objects in V vectors.

(1) If u and v are objects in V , then u+ v is in V .

(2) u+ v = v + u for all u, v ∈ V .

(3) u+ (v + w) = (u+ v) + w for all u, v, w ∈ V .

(4) There is an object 0 in V , called a zero vector for V , such that 0 + u = u + 0 = u

for all u ∈ V .

(5) For each u ∈ V , there is an object −u ∈ V such that u+ (−u) = (−u) + u = 0.

(6) If k is any scalar and u is any object in V , then ku ∈ V .

(7) k(u+ v) = ku+ kv for all u, v ∈ V and for all k ∈ R.

(8) (k +m)u = ku+mu for all u ∈ V and for all k,m ∈ R.

(9) k(mu) = (km)u for all u ∈ V and for all k,m ∈ R.

(10) 1u = u for all u ∈ V .

Definition 2. [2] A subset W of a vector space V is called a subspace of V if W is itself a

vector space under the addition and scalar multiplication defined on V .

Definition 3. [2] If S = {w1, w2, . . . , wr} is a nonempty set of vectors in a vector space V ,

then the subspace W of V that consists of all possible linear combinations of the vectors in

S is called the subspace of V generated by S, and we say that the vectors w1, w2, ..., wr

span W . We denote this subspace as W = span(S).

Definition 4. [2] If S = {v1, v2, . . . , vn} is a set of two or more vectors in a vector space

V , then S is said to be a linearly independent set if no vector in S can be expressed

as a linear combination of the others. A set that is not linearly independent is said to be

linearly dependent.

Definition 5. [2] A vector space V is said to be a finite-dimensional vector space if there

is a finite set of vectors in V that span V and is said to be infinite-dimensional if no such

set exists.



MATRIX GROUPS AND THEIR LIE ALGEBRAS 29

Definition 6. [2] If S = {v1, v2, . . . , vn} is a set of vectors in a finite-dimensional vector

space V , then S is called a basis for V if:

(a) S spans V .

(b) S is linearly independent.

Definition 7. If B = {v1, v2, . . . , vn} is a basis for a vector space V , then the dimension

of V is the cardinality of B.

Definition 8. [2] If T : V → W is a mapping form a vector space V to a vector space W ,

then T is called a linear transformation from V to W if the following two properties hold

for all vectors u and v in V and for all scalars k:

(i) T (ku) = kT (u)

(ii) T (u+ v) = T (u) + T (v).
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